
Protecting the Enterprise
OWASP API Security Top 10
Vulnerabilities

DATASHEET

The OWASP Top 10 project has for a long time been the
standard list of top vulnerabilities to look for and mitigate in
the world of web applications. APIs represent a significantly
different set of threats, attack vectors, and security best
practices for enterprises. That is why the OWASP commu-
nity launched a new classification of Top 10 vulnerabilities,
specific to API Security.

42Crunch offers end-to-end protection for APIs with a
developer-first platform that enables continuous, automat-
ed and scalable API security. Enterprises do not have to rely
on security by obscurity, manually configured rules, or
hope that some anomaly detection can report an attack.
With 42Crunch, our platform automatically protects your
APIs from the OWASP Top 10 API Security Vulnerabilities
and many additional threats.

Attacker substitutes ID of their resource in API call with an ID of a resource belonging to another user.
Lack of proper authorization checks allows access. This attack is also known as IDOR (Insecure Direct
Object Reference).

1. BROKEN OBJECT LEVEL AUTHORIZATION

• API call parameters use IDs of resourced accessed by the
API: /api/shop1/financial_details

• Attackers replace the IDs of their resources with different
ones, which they guessed:
/api/shop2/financial_details

• The API does not check permissions and lets the call
through

• Problem is aggravated if IDs can be enumerated:
/api/123/financial_details

• Implement authorization checks with user policies and
hierarchy

• Don’t rely on IDs sent from client. Use IDs stored in the
session object instead.

• Check authorization each time there is a client request
to access database

• Use random non-guessable IDs (UUIDs) H
O

W
 T

O
 P

R
E

V
E

N
T

U
SE

 C
A

SE
S

42Crunch’s ability to
secure both the CI/CD
pipeline & the runtime

environment makes it a
compelling candidate

for any API security
project.

RIK TURNER
Principal Analyst

OMDIA

Security the way it should be.
We use 42Crunch to improve the security posture of our APIs.

GLOBAL AUTOMOTIVE MANUFACTURER

Poorly implemented API authentication allowing attackers to assume other users’ identities.

2. BROKEN AUTHENTICATION

• Unprotected APIs that are considered “internal”

• Weak authentication not following industry best practices

• Weak, not rotating API keys

• Weak, plain text, encrypted, poorly hashed, shared/default
passwords • Susceptible to brute force attacks and
credential stuffing

• Credentials and keys in URL

• Lack of access token validation (including JWT validation)

• Unsigned, weakly signed, non-expiring JWTs

• Check all possible ways to authenticate to all APIs

• Password reset APIs and one-time links also allows users to
get authenticated and should be protected just as seriously

• Use standard authentication, token generation, password
storage, Multi- factor authentication

• Use short-lived access tokens

• Authenticate your apps (so you know who is talking
to you)

• Use stricter rate-limiting for authentication, implement
lockout policies and weak password checks

H
O

W
 T

O
 P

R
E

V
E

N
T

U
SE

 C
A

SE
S

API exposing a lot more data than the client legitimately needs, relying on the client to do the filtering.
Attacker goes directly to the API and has it all.

3. EXCESSIVE DATA EXPOSURE

• APIs return full data objects as they are stored by the
database

• Client application shows only the data that user needs
to see

• Attacker calls the API directly and gets sensitive data

• Never rely on client to filter data

• Review all responses and adapt responses to what the
API consumers really need

• Define schemas of all the API responses

• Don’t forget about error responses

• Identify all the sensitive or PII info and justify its use

• Enforce response checks to prevent accidental data and
exception leaks

H
O

W
 T

O
 P

R
E

V
E

N
T

U
SE

 C
A

SE
S

API is not protected against an excessive amount of calls or payload sizes. Attackers use that for DoS and
brute force attacks.

4. LACK OF RESOURCES & RATE LIMITING

• Attacker overloading the API

• Excessive rate of requests

• Request or field sizes

• “Zip bombs”

• Rate limiting

• Payload size limits

• Rate limits specific to API methods, clients, addresses

• Checks on compression ratios

• Limits on container resources

H
O

W
 T

O
 P

R
E

V
E

N
T

U
SE

 C
A

SE
S

API relies on client to use user level or admin level APIs. Attacker figures out the “hidden” admin API
methods and invokes them directly.

5. BROKEN FUNCTION LEVEL AUTHORIZATION

Some administrative functions are exposed as APIs

• Non-privileged users can access these functions if they
know how

• Can be a matter of knowing the URL, using a different
verb or parameter

/api/users/v1/user/myinfo

/api/admins/v1/users/all

• Don’t rely on app to enforce admin access

• Deny all access by default

• Grant access based on specific roles

• Properly design and test authorization

H
O

W
 T

O
 P

R
E

V
E

N
T

U
SE

 C
A

SE
S

Poor configuration of the API servers allows attackers to exploit them.

7. SECURITY MISCONFIGURATION

• Unpatched systems

• Unprotected files and directories

• Unhardened images

• Missing, outdated, misconfigured TLS

• Exposed storage or server management panels

• Missing CORS policy or security headers

• Error messages with stack traces

• Unnecessary features enabled

• Repeatable hardening and patching processes

• Automated process to locate configuration flaws

• Disable unnecessary features

• Restrict administrative access

• Define and enforce all outputs including errors

H
O

W
 T

O
 P

R
E

V
E

N
T

U
SE

 C
A

SE
S

6. MASS ASSIGNMENT

• API working with the data structures

• Received payload is blindly transformed into an object
and stored

 NodeJS:
 var user = new User(req.body);
 user.save();
 Rails:
 @user = User.new(params[:user])

• Attackers can guess the fields by looking at the GET
request data

• Don’t automatically bind incoming data and internal objects

• Explicitly define all the parameters and payloads you are
expecting

• For object schemas, use the readOnly set to true for all
properties that can be retrieved via APIs but should never be
modified

• Precisely define at design time the schemas, types, patterns
you will accept in requests and enforce them at runtime H

O
W

 T
O

 P
R

E
V

E
N

T

U
SE

 C
A

SE
S

Attacker constructs API calls that include SQL-, NoSQL-, LDAP-, OS- and other commands that the API
or backend behind it blindly executes.

8. INJECTION

Attackers send malicious input to be forwarded
to an internal interpreter:

• SQL, NoSQL
• LDAP
• OS commands
. XML parsers
• Object-Relational Mapping (ORM)

. Never trust your API consumers, even if internal

• Strictly define all input data: schemas, types, string patterns
- and enforce them at runtime

• Validate, filter, sanitize all incoming data

• Define, limit, and enforce API outputs to prevent data leaks

H
O

W
 T

O
 P

R
E

V
E

N
T

U
SE

 C
A

SE
S

© 42Crunch.com 2021

San Francisco - Dublin - São Paulo - Montpellier - London

ABOUT 42CRUNCH
APIs are the core building block of every enterprise's digital
strategy, yet they are also the number one attack surface for
hackers. The time is right for a new approach to API security.
42Crunch offers the industry's only Developer-First API
Security platform to empower your developers with a
shift-left approach to design and automate security into
your APIs. The platform's shield-right runtime enforcement
capability also provides security teams with full visibility and
control of security policy enforcement throughout the API
lifecycle.

Attacker finds non-production versions of the API: such as staging, testing, beta or earlier versions - that
are not as well protected, and uses those to launch the attack.

9. IMPROPER ASSETS MANAGEMENT

• DevOps, cloud, containers, K8s make having multiple
deployments easy (Dev, Test, Branches, Staging, Old
versions)

• Desire to maintain backward compatibility forces to leave
old APIs running

• Old or non-production versions are not properly maintained

• These endpoints still have access to production data

• Once authenticated with one endpoint, attacker may
switch to the other

. Inventory all API hosts

• Limit access to anything that should not be public

• Limit access to production data. Segregate access to
production and non-production data.

• Implement additional external controls such as API firewalls

• Properly retire old versions or backport security fixes

• Implement strict authentication, redirects, CORS, etc. H
O

W
 T

O
 P

R
E

V
E

N
T

U
SE

 C
A

SE
S

Lack of proper logging, monitoring, and alerting let attacks go unnoticed.

10. INSUFFICIENT LOGGING AND MONITORING

• Lack of logging, monitoring, alerting allow attackers to go
unnoticed

• Logs are not protected for integrity

• Logs are not integrated into Security Information and Event
Management (SIEM) systems

• Logs and alerts are poorly designed

• Companies rely on manual rather than automated systems

• Log failed attempts, denied access, input validation failures,
any failures in security policy checks

• Ensure that logs are formatted to be consumable by other
tools

• Protect logs as highly sensitive

• Include enough detail to identify attackers

• Avoid having sensitive data in logs - If you need the
information for debugging purposes, redact it partially.

• Integrate with SIEMs and other dashboards, monitoring,
alerting tools

H
O

W
 T

O
 P

R
E

V
E

N
T

U
SE

 C
A

SE
S

We meet the most rigorous
industry security standards.

We contribute to
the community work on

the OpenAPI specification.

