
1

About our Speakers

Introduction

Colin Domoney
API Security Research Specialist & Developer
Advocate

Editor of APISecurity.io

Dr. Philippe De Ryck

Web Security Expert

Pragmatic Web Security

42Crunch

Housekeeping Rules

• All attendees muted
• Questions via chat window
• Recording will be shared on-demand
• Polling questions

Broken function level authorization5

Lack of resources & rate limiting4

Excessive data exposure3

Broken user authentication2

Broken object level authorization1

Insufficient logging & monitoring10

Improper assets management9

Injection8

Security misconfiguration7

Mass assignment6

API Security

Broken function level authorization5

Lack of resources & rate limiting4

Excessive data exposure3

Broken user authentication2

Broken object level authorization1

Insufficient logging & monitoring10

Improper assets management9

Injection8

Security misconfiguration7

Mass assignment6

API Security

User authentication

AuthorizationClient
authentication

User authentication state
("session management")

User/client
authentication

Token-based
authorization

Requests with access
tokens

https://courses.pragmaticwebsecurity.com/courses/introduction-to-oauth-2-0-and-openid-connect

#2
Broken User

authentication

#2
Broken User

authentication

#1
Broken Object Level

Authorization #6
Mass

Assignment

#3
Excessive Data

Exposure

#5
Broken Function

Level Authorization

Polling Question 1: Multiple Choice
How are you testing/checking for authentication
and/or authorization vulnerabilities?

1. Manual (or automated) code review

2. Automated conformance scanning

3. Penetration testing

4. Manual QA testing

Polling Question 1: Multiple Choice
How are you testing/checking for authentication
and/or authorization vulnerabilities?

https://www.codementor.io/@olatundegaruba/nodejs-restful-apis-in-10-minutes-q0sgsfhbd

A REST API endpoint without any authorization

1

2

3

4

5

6

7

8

9

app.delete('/tasks/:taskId', function(req, res) {

 Task.remove({

 _id: req.params.taskId

 }, function(err, task) {

 if (err)

 res.send(err);

 res.json({ message: 'Task successfully deleted' });

 });

};

A REST API endpoint restricted to authenticated users only

1

2

3

4

5

6

7

8

9

app.delete('/tasks/:taskId', requiresAuth, function(req, res) {

 Task.remove({

 _id: req.params.taskId

 }, function(err, task) {

 if (err)

 res.send(err);

 res.json({ message: 'Task successfully deleted' });

 });

};

IF ANY AUTHENTICATED
USER IS SUPPOSED TO

ACCESS THIS ENDPOINT:
YES, OTHERWISE: NO

A REST API endpoint restricted to users with the specific "deleteTask" permission

1

2

3

4

5

6

7

8

9

app.delete('/tasks/:taskId', auth.hasPermission('deleteTask'), function(req, res) {

 Task.remove({

 _id: req.params.taskId

 }, function(err, task) {

 if (err)

 res.send(err);

 res.json({ message: 'Task successfully deleted' });

 });

};

HARD TO SAY. DEPENDS ON
THE AUTHORIZATION

MODEL OF THE
APPLICATION

THIS CORRESPONDS
MOSTLY TO #5

(FUNCTION-LEVEL ACCESS
CONTROL), BUT WE'RE NOT

DOING #1 (BOLA) HERE

Checking permissions helps
prevent broken

function-level authorization
(#5)

Permissions on an endpoint do
not suffice to stop broken

object-level authorization (#1)

ENFORCE
AUTHORIZATION AT THE

FUNCTION LEVEL

By applying a sensible permission/role check
to every endpoint, unauthorized requests can
be rejected before they reach the application
logic

#5 Broken Function Level Authorization

A REST API endpoint to delete a task

1

2

3

4

5

6

7

8

9

app.delete('/tasks/:taskId', auth.hasPermission('deleteTask'), function(req, res) {

 Task.remove({

 _id: req.params.taskId

 }, function(err, task) {

 if (err)

 res.send(err);

 res.json({ message: 'Task successfully deleted' });

 });

};

NO AUTHORIZATION ON
THE READING OF THE TASK.

IS THAT INTENTIONAL?

REQUIRES INTIMATE
KNOWLEDGE OF THE

APPLICATION TO KNOW
THIS, MAKING IT DIFFICULT

TO AUDIT THE
AUTHORIZATION POLICY

A REST API endpoint to get a task

1

2

3

4

5

6

7

app.get('/tasks/:taskId', function(req, res) {

 Task.findById(req.params.taskId, function(err, task) {

 if (err)

 res.send(err);

 res.json(task);

 });

};

A REST API endpoint to delete a task

1

2

3

4

5

6

7

8

9

app.delete('/tasks/:taskId', auth.hasPermission('deleteTask'), function(req, res) {

 Task.remove({

 _id: req.params.taskId

 }, function(err, task) {

 if (err)

 res.send(err);

 res.json({ message: 'Task successfully deleted' });

 });

};

BY LOOKING AT THE CODE,
IT BECOMES IMMEDIATELY
CLEAR WHAT THE AUTHZ

RULES ARE FOR BOTH
ENDPOINTS, MAKING

AUDITING A LOT EASIER

A REST API endpoint to get a task

1

2

3

4

5

6

7

app.get('/tasks/:taskId', auth.allowPublicAccess(), function(req, res) {

 Task.findById(req.params.taskId, function(err, task) {

 if (err)

 res.send(err);

 res.json(task);

 });

};

EMPOWER AUDITABILITY

Simplify the auditing of your authorization
policy by making authorization logic explicit,
even when endpoints have no specific
authorization requirements.

#1 Broken Object Level Authorization
#2 Broken User Authentication
#5 Broken Function Level Authorization

Object-level access control is often challenging to implement

1

2

3

4

5

6

7

8

9

app.delete('/tasks/:taskId', auth.hasPermission('deleteTask'), async (req, res) => {

 let origTask = await Task.findById(req.params.taskId)

 if(auth.hasRole('employee') && !origTask.owner.id == auth.currentUser.id)

 res.status(403).send(

 { message: 'You are not a manager. You can only delete your own tasks.'});

 // Delete task

});

A permission check only
allows authorized users to

access this endpoint

Certain roles require
additional restrictions,
such as task ownership

Policies scattered throughout
the code like this are

impossible to audit for security

WHAT'S THE
ALTERNATIVE?

Ask the Policy Engine to
make an authorization

decision

Open Policy Agent

https://www.openpolicyagent.org/
https://www.osohq.com/

ENCAPSULATE COMPLEX
AUTHORIZATION LOGIC

Complex authorization logic should not be
scattered throughout the code, but is best
defined in a clear and understandable
authorization policy

#1 Broken Object Level Authorization
#5 Broken Function Level Authorization

Polling Question 2: Multiple Choice
What Authorization Framework/Library/Stack
are you using?

1. Roll our own

2. Framework middleware (ASP.Net Core, Spring, etc)

3. Open Policy Agent (OPA)

4. OSOHq

Polling Question 2: Multiple Choice
What Authorization Framework/Library/Stack
are you using?

A user authenticates once

The user's authenticated
state is included in every

request

Cookie:
JSESSIONID=DCDA…3C06

• https://devcenter.heroku.com/articles/java-session-handling-on-heroku

TRADITIONAL
WEB SESSIONS

ARE STILL VALID

Browser-based applications without
extreme scalability needs can rely on
traditional cookies to propagate
authentication state.

#2 Broken User Authentication

User/client
authentication

Token-based
authorization

Requests with access
tokens

A reference token is nothing more but
an identifier, pointing to specific state

kept the authorization server

Obtain a reference
access token

Requests with access
token

Token introspection
to translate a token
into concrete values

WHAT ARE THE BENEFITS
OF REFERENCE TOKENS?
AND THE DRAWBACKS?

+ CONTROL
+ REVOCATION

- PERFORMANCE

A self-contained token is a data
structure holding all the relevant data

to make authorization decisions

Obtain a self-contained
acess token

Requests with access
token

Token validation to
ensure the integrity
of the provided data

WHAT ARE THE BENEFITS
OF SELF-CONTAINED
TOKENS? AND THE

DRAWBACKS?

+ SCALABILITY
+ PERFORMANCE

- REVOCATION (SHORT
LIFETIMES)

- TOKEN VALIDATION

ANALYZE YOUR SECURITY
REQUIREMENTS

Self-contained tokens are hard to revoke
automatically, but reference tokens induce a
lot more overhead.

Understanding your requirements is
essential for making the right decision.

#2 Broken User Authentication

“Any hints you can share on how to
draw the line on when to
refactor/upgrade the authorization
component to things like OPA and
OSO?”

Attendee Questions:

The decoded payload of a JWT access token

1

2

3

4

5

6

7

8

9

{

 "iss": "https://sts.restograde.com",

 "aud": "https://api.restograde.com",

 "sub": "2262430d-c9cb-484f-9770-805893ff9518",

 "iat": "1516239022",

 "exp": "1516249022",

 "permissions": ["reviews:read", "reviews:write"],

 …

}

The decoded header of a JWT access token

1

2

3

4

5

{

 "alg": "PS256",

 "typ": "at+jwt",

 "kid": "NTVBOTU3MzBBOEUUU5QTYxQUUyOUNEQUUxNjEyMw"

}

https://tools.ietf.org/html/rfc8725

https://42crunch.com/7-ways-to-avoid-jwt-pitfalls/

RELIGIOUSLY FOLLOW
JWT SECURITY
BEST PRACTICES

Insecure JWT handling is extremely common.

Encapsulate this behavior in a reusable
component which is vetted for security.

#2 Broken User Authentication

The API response to retrieve online users

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

[

 {

 "id": 3,

 "name": "Hugh",

 "address": "5 George's Dock, …",

 },

 {

 "id": 6,

 "name": "Colin",

 "address": "71-75 Shelton Street, …",

 },

 {

 "id": 17,

 "name": "Philippe",

 "address": "Holsbeeksesteenweg 143, …",

 }

]

Online users: Hugh, Colin, Philippe

https://APISecuritySwagShop.com

Welcome to the shop

The Java Spring endpoint returning users

1

2

3

4

5

@RequestMapping(path = "/online/users", method = GET, produces = "application/json")

public ResponseEntity<Object> getOnlineUsers() {

 List<User> users = UserService.getOnlineUsers();

 return new ResponseEntity<Object>(users, HttpStatus.OK);

}

The User data class

1

2

3

4

5

6

7

8

9

10

11

public class User {

 private String id, name, address;

 …

 public String getName() {

 return name;

 }

 public String getAddress() {

 return address;

 }

}

Data fields are automatically
translated to JSON, even when they

are not supposed to be exposed

The Java Spring endpoint returning users

1

2

3

4

5

@RequestMapping(path = "/online/users", method = GET, produces = "application/json")

public ResponseEntity<Object> getOnlineUsers() {

 List<User> users = UserService.getOnlineUsers();

 return new ResponseEntity<Object>(users, HttpStatus.OK);

}

The User data class

1

2

3

4

5

6

7

8

9

10

11

12

public class User {

 private String id, name, address;

 …

 public String getName() {

 return name;

 }

 @JsonIgnore

 public String getAddress() {

 return address;

 }

}

Annotations can be used to avoid
including sensitive fields in JSON

responses

The Java Spring endpoint returning users

1

2

3

4

5

@RequestMapping(path = "/online/users", method = GET, produces = "application/json")

public ResponseEntity<Object> getOnlineUsers() {

 List<User> users = UserService.getOnlineUsers();

 return new ResponseEntity<Object>(users.stream().map(PublicUserInfo::new), HttpStatus.OK);

}

The PublicUserInfo DTO class

1

2

3

4

5

6

7

8

9

10

11

12

public class PublicUserInfo {

 private String id, name;

 public PublicUserInfo(User user) {

 this.setId(user.getId());

 this.setName(user.getName());

 }

 …

 public String getName() {

 return name;

 }

}

The DTO class only defines fields that
are supposed to be exposed.

A User object is never directly
exposed to the client.

TEST YOUR API
ENDPOINTS DIRECTLY

Testing the behavior of an API cannot be
done through a client application.

Inspect the endpoints' code and responses to
ensure the API behaves correctly.

#3 Excessive Data Exposure

The OpenAPI contract for the endpoint

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

paths:

 /online/users:

 get:

 responses:

 '200':

 description: A list of online users

 content:

 application/json:

 schema:

 type: array

 items:

 type: object

 properties:

 id:

 type: integer

 description: The user ID

 name:

 type: string

 description: The display name of the user

I WILL CALL ON COLIN TO
GIVE A BIT MORE CONTEXT
ABOUT WHAT 42CRUNCH

CAN DO WITH THIS
CONTRACT

USE OPENAPI
DEFINITIONS FOR

SECURITY

Write Swagger/OpenAPI definitions to
specify the behavior of your API.

Security tools consume such definitions for
automatic detection and protection.

#3 Excessive Data Exposure

4
5

Polling Question 3: Single Choice
Which of the following are you specifying in
your OpenAPI specifications?

1. Security constructs (AuthZ and AuthN)

2. Data contracts (request and response payloads)

3. Both

4. Not using OpenAPI specifications

Polling Question 3: Single Choice
Which of the following are you specifying in
your OpenAPI specifications?

The Java Spring endpoint returning users

1

2

3

4

@RequestMapping(path = "/user/{id}", method = PATCH, consumes = "application/json")

public void updateUser(String id, @RequestBody User user) {

 UserService.updateUser(id, user);

}

A legitimate request payload to update the user's name

1

2

3

{

 "name": "Dr. Phil"

}

Updates the DB with new field values
for the user with the given ID

A malicious request payload to update restricted fields

1

2

3

4

{

 "name": ”Philippe becomes admin",

 "role": "admin"

}

The User data class

1

2

3

4

5

6

7

8

9

10

11

public class User {

 private String id, name, role;

 …

 public void setName(String name) {

 this.name = name;

 }

 public String setRole(String role) {

 this. role = role;

 }

}

The Java Spring endpoint returning users

1

2

3

4

@RequestMapping(path = "/user/{id}", method = PATCH, consumes = "application/json")

public void updateUser(String id, @RequestBody User user) {

 UserService.updateUser(id, user);

}

The User data class

1

2

3

4

5

6

7

8

9

10

11

12

public class User {

 private String id, name, role;

 …

 public void setName(String name) {

 this.name = name;

 }

 @JsonProperty(access = Access.READ_ONLY)

 public String setRole(String role) {

 this. role = role;

 }

}

Annotations can be used to avoid
populating sensitive fields with JSON

data

The Java Spring endpoint returning users

1

2

3

4

@RequestMapping(path = "/user/{id}", method = PATCH, consumes = "application/json")

public void updateUser(String id, @RequestBody UpdateUserInfo user) {

 UserService.updateUser(id, user);

}

The UpdateUserInfo DTO class

1

2

3

4

5

6

7

8

9

10

11

public class UpdateUserInfo {

 private name;

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

}

The DTO class only defines fields that
are supposed to be populated.

A User object is never directly
accepted as input from the client.

TEST YOUR APIS IN
THEIR NATURAL HABITAT

Make sure your API behaves
the way you think it does.

Code analysis is only one aspect. Runtime
testing is necessary to get the full picture.

#6 Mass Assignment

The OpenAPI contract for the endpoint

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

/users/{id}:

 patch:

 description: Update a user

 parameters:

 - in: path

 name: id

 description: The unique ID of the user

 required: true

 schema:

 type: integer

 requestBody:

 required: true

 content:

 application/json:

 schema:

 type: object

 properties:

 name:

 type: string

 description: The display name of the user

COLIN SHOULD PITCH IN
AGAIN WITH 42CRUNCH

SPECIFICS

USE OPENAPI
DEFINITIONS FOR

SECURITY

Write Swagger/OpenAPI definitions to
specify the behavior of your API.

Security tools consume such definitions for
automatic detection and protection.

#6 Mass Assignment

“Is reference token same as an Opaque
access token?”

Attendee Questions:

Further Information

Extra Reading

APIsecurity.io Weekly Newsletter #1 OpenAPI Editor – 400k+ users Developer-First API Security Platform
https://apisecurity.io/ https://42crunch.com/resources-free-tools/

Webinar 3: Remediating the outstanding OWASP API
Security Top 10 Issues.
11am EST / 4pm GMT - March 24, 2022

https://42crunch.com/request-demo/

Blogposts

https://apisecurity.io/
https://42crunch.com/resources-free-tools/

55

