21 June 2022

Introduction

About the Speaker

Colin Domoney

API Security Research Specialist & Developer Advocate

Editor of APISecurity.io
Cyberbroof, Veracode, CA, Deutsche Bank

2 | 42Crunch.com

Housekeeping Rules

. All attendees muted
. Questions via Q&A
. Recording will be shared

To err is human

- Mistakes happen to everyone
- Mistakes can be very costly

- Mistakes are a learning opportunity

- Mistakes can often easily be detected

SCHADENFREUDE

4 | 42Crunch.com

#1 : Global shipping company

What happened?

Researchers discovered they could automatically submit parcel numbers to an API that retrieved a map image. They then
used this image to guess the postcode and then were able to retrieve full parcel information and extended user
information.

Impact:

Potentially large-scale exfiltration of customer PIlI and parcel tracking information. Researchers reported responsibly and
a fix was released before exploitation.

Cause:
Lack of rate-limiting
Excessive information exposure

Lessons learned:

Protect APIs from brute-force attacks.
« Only return the minimum information necessary.

5 | 42Crunch.com

#1 : Global shipping company

JSON Raw Data Headers

Save Copy Collapse All Expand All 'y Filter JSON

CUUNELE yrvomc . VIIALEY Alliguum

w 3ddressPoint:

longitude: -8.93712
latitude: 51.938842
0% v notificationDetails:
% mobile:
q%h‘ email: null
contactName: "KEN MUNRO"

v podDetails:
podName: “Tom

podNeiehbour: null

6 | 42Crunch.com

#2 . Campus access control

What happened?

A campus access control application used a backend API that did not authenticate users allowing an attacker to
impersonate any user given their guessable IDs. By faking the user location an attacker could access all doors on campus.

Impact:
Unknown, but probably limited.

Cause:
« Broken function-level authorization
* Broken authentication

Lessons learned:
- Ensure all functions are fully authenticated.
- Make sure you can revoke any sessions keys or tokens.

7 | 42Crunch.com

#3 : Microbrewery application

What happened?

Mobile application for microbrewery used hardcoded tokens within application binary which could easily be extracted
allowing for manipulation of backend functions including other users PIl, and access to discount schemes, etc.

Impact:
Free beer !! Disclosure of user’s PII.

Cause:
Hardcoded tokens in mobile application

Lessons learned:

Use a standard mechanism (OAuth2) for the exchange and distribution of tokens.
Make sure you are able to revoke any sessions keys or tokens.

8 | 42Crunch.com

9

#3 : Microbrewery application

)

getUser: function(t){return
o.default.get("https: . Ir yVi/customers/"+t,{headers:{"Cache-
Control": 'no-cache, no-store, must-revaludate Pragma no—cache ,Expires:0,Authorization:"bearer
y99a5p6dhqspwr51h5z9r6h7t0zuawsx"}})},

getUserwlthUsername functlon(t){return
o.default.get("hitps:/, 1k, Juk/V1/c Jsearch?searchCriteria[filterGro
ups][O][fntters][0][fleld]-emanl&searchCntena[fllterGroups][0][f:lters][0][value]-"+t+"&searchCntena
[filterGroups][0][filters][0][conditionType)=equals”,{headers:{'Cache-Control':'no-cache, no-store,
must-revalidate',Pragma:'no-cache’,Expires:0,Authorization:"bearer
y99a5p6dhgspwr51h5z9r6h7t0zuaw5sx"}})},

setMylocal: functnon(t,s,n){return

tps://w | Juk/rest/uk/Vi/customers/ " +.id, {customer:{id:t.id,group
_id:t.group_id, emall t. email firstname:t. ﬂrstname Iastname t. lastname store_id:t.store_id,website_i
d:t.website_id,custom_attributes:[{attribute_code:'my_local_id',value:s},{attribute_code:'my_local_
reset_date',value:n}]}},{headers:{Authorization:"bearer y99a5p6dhqspwr51h529r6h7t0Ozuawsx"}})}};

42Crunch.com

Resp

Pretty

onse
Raw Hex Render \n =
"1an: .

"group_id":8,
"default billing”:"IER".
"default_shipping”: SN ",

"created at":"2021-01-12 17:20:17",

"updated at”:"2021-08-31 14:01:45",
"created_ 1n":"Dﬁfau1t Store View",
"dob": " 157 o
"email”:" .
"firstname”:"Alan",
"lastname":"Monie",
"gendexr”:0,
"store_id":1l,
"website id":1,
"addresses": [
(viar: -
"custormer_id": [N,
"reqxon"(
"region_code":null,
"region":null,
"region_id":0
, ’
"region_id":0,
"country_xd":"GB",
"street”: ([
1,
"telephone":"+4477 7 EN"
"postcode": " IIIIIENGEGNG",
"eicy": " I
"firstname”:"Alan",
"lastname":"Monie",
"default_shipping”:true

Select extension...

N

#4 . Cryptocurrency portal

What happened?

A researcher discovered an issue in a cryptocurrency trading platform whereby he could trade between two different
accounts. The platforms failed to validate the account details and allowed purchases from accounts with insufficient
funds. The exploit could be triggered by manipulating APl request parameters.

Impact:
Limited due to responsible disclosure and immediate response.

Cause:
A text-book case of broken-object level authorization allowing manipulation via an APl parameter.

Lessons learned:

Broken object-level authorization is the number one API security issue — always ensure you fully validate access to
objects for all requests.

Bug bounties can be profitable — this was worth $250,000.

10 | 42Crunch.com

#5 : Dating application

What happened?

A researcher discovered he could use trilateration techniques to determine the precise location of users. It was also
possible to access the Pll information of connected users.

Impact:
Minimal although caused embarrassment for the application affected.

Cause:
» Another example of broken object-level authorization

» Excessive information exposure allowed inference of user location to a high level of precision.
« Security by obscurity

Lessons learned:

- Only disclose the minimum of information necessary via API calls as attackers may infer other useful user data.

- Never rely on client-side protections to protect your user data since this can easily be circumvented by using the API
directly.

11 | 42Crunch.com

#5 : Dating application

"user_id": 1234567890,
"distance": 5.21398760815170,
7 o B ae

Lake’ %53
Merced'Park:

o

12 | 42Crunch.com

#6 : All in One SEO WordPress plugin

What happened?

A popular WordPress plugin had a broken APl endpoint which allowed any authenticated users to have full access
(effectively admin access) to affected sites.

Impact:
Full takeover of affected WordPress sites, immediate patch released.

Cause:
Broken function-level authorization and poor default settings in APl endpoint handler.

Lessons learned:

Ensure that all functions and endpoints are fully authenticated and authorized.
Defensive coding techniques should be used to prevent access in the case of failure.

13 | 42Crunch.com

#7 . A case study of API vulnerabilities

What happened?

A researcher discovered an assortment of APl vulnerabilities can be chained together to totally compromise an affected
platform.

Impact:
Minimal due to immediate, responsible disclosure.

Cause:

» UUID leakage

» Broken object-level authorization

» Broken function-level authorization

» Poor JWT validation

» Secrets committed to source code repositories
» Leakage of API tokens via web Ul

Lessons learned:
- Skilled attackers can chain vulnerabilities together to achieve total compromise.

14 | 42Crunch.com

#8 : Load balancer

What happened?

A load balancing and security suite were affected by a Remote Code Execution (RCE) vulnerability. The vulnerability is in

the REST API that allowed remote access to platform configuration. Attackers could gain access to an exposed command
shell endpoint that did not require any authentication.

Impact:

16,000 systems were exposed on the internet. No reported breaches occurred, and the issue has been patched.

Cause:
Broken authentication

Lessons learned:
Ensure all APl endpoints are authenticated.

Reduce attack surface by removing unnecessary management interfaces or lock down their public access.

15 | 42Crunch.com

#9 : Home router

What happened?

A popular home router was vulnerable to command injection vulnerability in an internal API. A security researcher

discovered an internal admin interface that the router Ul used to execute arbitrary commands and was able to execute
arbitrary commands.

Impact:
No reported breaches were disclosed, and at the time of writing no patches were available.

Cause:
- Broken authentication
- Cross-site request forgery

Lessons learned:

- Ensure all APl endpoints are authenticated.

- Reduce attack surface by removing unnecessary management interfaces.

- Protect internet facing access with well trusted protections (such as CSRF tokens)

16 | 42Crunch.com

#9 : Home router

Request Response
_[MTParams THeaders THex] _Il!mIHeaders THex]
X +
Pretty IEEDE \n Actions Vv Pretty IRENE Render \n Actions Vv
192.168.10.1/
1 POST /cgi-bin/adm.cgi HTTP/1.1 : 1 HTTP/1.1 200 OK
Ping Test ? Host: 192.168.10.1 2 ContentTLength: 197
3 Content-Length: 51 3 Connection: close
4 Cache-Control: max-age=9 4 Date: Tue, 05 Apr 2022 12:47:10 GMT
5 Upgrade-Insecure-Requests: 1 5 Server: lighttpd
Ping Host IP : s [Ping | 6 Origin: http://192.168.18.1 6
7 Content-Type: application/x-www-form-urlencoded 7 admin2860:cw50/ZsT/P2ro:0:0:Adminstrator:/:/bin/sh
) 8 User-Agent: Mozilla/5.0 (Windows NT 10.8; Winé4; 8 rootws:0zSejhhYc6rTA:8:0:Adminstrator:/:/bin/sh
Ping Result : x64) AppleWebKit/537.36 (KHTML, like Gecko) 9 share:x2GUdKFGPSHBQ:0:0@: share:/media: /bin/sh
‘Mﬂ§£9L Chrome/85.0.4183.121 Safari/537.36 10 anonymous::500:500:anonymous:/home/anonymous:/bin/s
2ilogin.cgi 9 Accept: h
3?2”““@9' text/html,application/xhtml+xml,application/xml;q 11
éz;;:ga =9.9, image/avif, image/webp, image/apng,*/*;q=0.8,a

pplication/signed-exchange;v=b3;q=0.9
10 Referer: http://192.168.10.1/ping.shtml?r=86674
11 Accept-Encoding: gzip, deflate
12 Accept-Language: en-US,en;q=0.9
13 Cookie: session=592250009
Connection: close

b

15
16 page=ping_test&CCMD=4&pingIp=
%3B+cat+/etc/passwds3B

17 | 42Crunch.com

#10 : Smart scale

What happened?

Researchers discovered that they could perform a variety of attacks on an APl backend for a smart scale, including gaining
access to access and refresh tokens, and account takeover using a ‘password reset’ functionality.

Impact:
Vulnerabilities were remediated SEVEN months after disclosure.

Cause:

» Broken authentication

» Broken object-level authorization
« Excessive data exposure

Lessons learned:

- Multiple vulnerabilities can be effectively combined to achieve total compromise.
- In the event of a disclosure ensure you have a plan for remediation and mitigation.

18 | 42Crunch.com

#10 : Smart scale

W= =
Request Response
Raw Hex B v = metty Rw He n =

- —_— cwe, = semy mves we. twiwe wees
1 POST /api/ios/user/register-child.d HTTP/1.1 Content-Type: application/json;charset=UTF-8
2 Host: intaccount.iyunmai.com 4 Content-Length: 615

Content-Type: application/x-www-form-urlencoded Connection: close
¢ Accept-Encoding: gzip, deflate Request Paytoad Status Error Timeout Length Comment

Connection: close (

Accept: */* “result®: (30 6309 200 176
7 User-Agent: scale/59 (iPhone; i0S 12.1.3; Scale/Z.00) "msg": "Success!®, 3 6002 200 243
accessToken: alcS50acf0cfe4Ele98lef44bbS4S ael “code”: 0 - 200 243
Accept-Language: en-GB;gq=1 "msgen®: *00! " . &
Content-Length: 159) 2 6001 200 243
L *data’: (1 6000 200 243
birthday=199705244code=1£533707004height=170&lang=24 visexistnode": false I 6008 - 243
puld=E02E1969%k realNane=MaliciousAccountirelevanceNane “userinfo®: (o i
=7 =1 v =3& 1d=£027542534versionCode=3 . “.eg - E4£78002 80242 6 6005 X 243

ESeErisslgaiersion SEuser e an=Iv el MvEzslncoNe accessToken": "0455142504bE4£70b02£d0ala4080242",
"basisWeight*:0, S 6004 200 243
*birthday": 19870524, 8 6007 200 243
"bodyType": -1, -
“bust":90, 4 6003 200 243
"countryCode”:0, 7 6006 200 243
"createTime":147883£800000, i S haa b
"existDevice":0

‘ R

“girscPac’:0, Request eiponse

“firstWeight":0,
"height":170, Fretty
"heightUnic": 2,

"puld®:€02€19692,

Hx w =

POST /api/android/user/update-passvord. d HITP/Z

*randomKey" : “KX1y07+kBZHYx1bc3wptLus=", < Host:@ intaccount. iyunmai. com

“reallame"”: "MaliciousAccount”, User-Agent . yunmali android

“refreshToken": “4785ct7cEbal48L90564a09 8d8 beach ", { User~Agent: yunmai_ android

“registerType®:Z, Content~Type: application/x-www-form-urlencoded

"relevanceName":7,
‘sex®:1,
“status*:0,

Content~Length: 111
Accept~Encoding: gzip, detflate

"timeOffSer”:0, Connection: close
"unic*:1,
“userId":E602758399, code=lEIT45ET004nevPassvorde 12 3dquerival idateCode~JEE305k L ang="cuserNanesbogdant d0bde secur ity comisignVersion=l

"userName": "Bogdan@fortbridge. co.uk_Cl3F54",
“waistLine":85§

19 | 42Crunch.com

#11 : Automation platform

What happened?

Researchers discovered a vulnerability in the APl endpoint that provide remote administration on an industrial automation

platform. This allowed remote code execution attacks. Additionally, a file transfer endpoint allowed for overwrite of the
local filesystem.

Impact:
Prompt disclosure and a hotfix prevented any compromised.

Cause:
Broken authentication

Lessons learned:

Ensure all APl endpoints are authenticated.

Reduce attack surface by removing unnecessary management interfaces.
- Use read-only filesystems for system images such as operating systems.

20 | 42Crunch.com

#12 : CI/CD platform

What happened?

Researchers discovered that they could access historical logs for a popular CI/CD platform by enumerating APl endpoints.

The logs contained secret information including access tokens and credentials to 3™ party platforms such as GitHub and
AWS.

Impact:
Leakage of tens of thousand of access credentials to 3™ party platforms. Vendor claims this is “by design” !

Cause:

» Hidden API endpoints allowed enumeration of archived log files.
» Lack of rate-limiting.

Lessons learned:
- Do not rely on security by obscurity.

- Rate limiting is important, but it is only one element of an API defense strategy.
- Always have a plan for revoking and reissuing credentials.

21 | 42Crunch.com

#12 : CI/CD platform

github_user url_ stars key value
B B nitpsy/ v3fob/3lme ii®/log... 2417 docker_password i =
ntips-//! 3fjob/7 “log... 1872 docker_password
W ntips/] V307 Tlog... 217 docker_password
hitps:/f! v3job/2ms w=mmjlog.. 26 docker password
mmmw == hips:/ v3fob/6=ELmmm/log.. 16 docker_password ol |
ntips// 1 'V35ob/7 “memnii/log. . 6 docker password
O v nttps/ M Iv3fjob/7 = smwnjlog... 5 docker_password =i
Z nttps://. I Iv3fob/7 I I Aog... 2 docker_password |
nitps:// I IR,/ 3/j0b/ flog... aws_secret_access_key
) httpshI yv3ijob/ log.txt aws_secret_access_key
N | hitps:// Wv3/job/. Mlog... aws_secret_access_key
W httos//gm V300! Mog... aws_secret_access_key

hitps// A B/v3/job/ Mlog.. aws_secret_access_key

22 | 42Crunch.com

101710100010710071010710710711010001010071010107107110700070%7007070
10001010011000100010100010100110001000101000101001 1000
100110101000010100101001101010000101001Q10011 101 0100
D101010011010010000001010100110100100000010101001 1 1000|
101000101001001001001010001010010070010070100 1010 01001
011oo1oo:ooio1oao1o1or1oo1001001010101010110?;0010Q, 10101
10011101010100001000100111010101000‘!0001‘0! 01031000010
01001oo1010001oo1otoo|oo1oozo1og:;gg;g ooloonoto 310018 .
D101000010100100001001010000707 0000101001000

1011010001010010101010110100 \uﬂoiomoumoom;ootow PrOtQCtlng your APIS
1000101001100010001010F~ 1010 ¥0010100010100110001000

1001101010000101001010 010 oo 0010100110101000010100
10101001101007000000% 1080 130 J000SG10107001103001000
1010001010010010010090: Y0 13 01f 01000101001001001
D1100100100101070%010 W % 01 /A1001001001010101 .
100111010101000031000100 \} ! ¢ (00111010101000010 Best practices

D1001001010001001010010\ | £10010010100010010
D10100001010010 100 v “ M J010100001010010000
101710100010100101010101). & 0101101000101001010
10001010011000 1010001 (0100010100110001000
100711010100001 10 1 101001710101000010100
0101010011010019” " 201010 J0010101001101001000
101000101001001 a0(90101000101001001001
3110010010010 70 M . 1] 031011001001001010101
1001 0101 10000100, 00100111010101000010

D10 010010100 10010010010100010010
Di1010 100100001001, 10010100001010010000
10110 ooomotoo:ouoaoaolw 10101101000101001010
100 10077100010001010001 0. '0100010100110001000
100310101 0101001010011010Y 0100110101000010100

D107103001101001000000107101001% ‘010101001101001000
lﬂib0.101°01001001001010001010 101000101001001001
D1100700100710101010107100100104 11001001001010101

100111010'.10000100010011101010 0111010101000010

23 | 42Crunch.com

The top-ranking issues

Vulnerability

5
3
3
3
3
2
2

Broken object-level authorization (API1)
Lack of rate-limiting (API4)

Excessive information exposure (API13)
Broken function-level authorization (API5)
Broken authentication (API2)

Insecure default configuration (API7)
Security by obscurity

Hardcoded tokens 1

Cross-site request forgery 1

24 | 42Crunch.com

Broken object-level authorization (API1)

Use case How to prevent
API call parameters use the ID of the resource - Implement authorization checks with user policies and
accessed through the API hierarchy.
/api/shop1/financial_info. - Do not rely on IDs that the client sends. Use IDs stored
Attackers replace the IDs of their resources with in the session object instead.
a different one which they guessed through . Check authorization for each client request to access
/api/shop2/financial_info. database.

- The API does not check permissions and lets the - Use random IDs that cannot be guessed (UUIDs).

call through.

Problem is aggravated if IDs can be enumerated
/api/123/financial_info.

https://apisecurity.io/encyclopedia/content/owasp/apii-broken-object-level-authorization

25 | 42Crunch.com

https://apisecurity.io/encyclopedia/content/owasp/api1-broken-object-level-authorization

Broken authentication (API2)

Use case How to prevent

26

Unprotected APIs that are considered “internal”

Weak authentication that does not follow
industry best practices

Weak API keys that are not rotated

Passwords that are weak, plain text, encrypted,
poorly hashed, shared, or default passwords

Authentication susceptible to brute force attacks
and credential stuffing

Credentials and keys included in URLs

Lack of access token validation (including JWT
validation)

Unsigned or weakly sighed non-expiring JWTs

Check all possible ways to authenticate to all APIs.

APIs for password reset and one-time links also allow
users to authenticate, and should be protected just as
rigorously.

Use standard authentication, token generation,
password storage, and multi-factor authentication
(MFA).

Use short-lived access tokens.

Authenticate your apps (so you know who is talking to
you).

Use stricter rate-limiting for authentication, and
implement lockout policies and weak password checks.

https://apisecurity.io/encyclopedia/content/owasp/api2-broken-authentication

42Crunch.com

https://apisecurity.io/encyclopedia/content/owasp/api2-broken-authentication

Excessive information exposure (API3)

Use case How to prevent
The API returns full data objects as they are - Never rely on the client to filter data!
stored in the backend database. . Review all API responses and adapt them to match what
The client application filters the responses and the API consumers really need.
only shows the data that the users really need to . Carefully define schemas for all the API responses.
See. Do not forget about error responses, define proper
- Attackers call the API directly and get also the schemas as well.

sensitive data that the Ul would filter out. |dentify all the sensitive data or Personally Identifiable

Information (PIl), and justify its use.

- Enforce response checks to prevent accidental leaks of
data or exceptions.

https://apisecurity.io/encyclopedia/content/owasp/api3-excessive-data-exposure

27 | 42Crunch.com

https://apisecurity.io/encyclopedia/content/owasp/api3-excessive-data-exposure

Learning more

APISecurity.io Episode Two - Remediation and Prevention

Two-Part Webinar Series

Review of API Breaches
in H1 2022

Episode two - Remediation and Prevention
July 21st, 2022 | 8am PST | 4pm BST

https://apisecurity.io/

https://42crunch.com/api-breaches-h1-2022/

28 | 42Crunch.com

https://apisecurity.io/
https://42crunch.com/api-breaches-h1-2022/

Upcoming News

Further Activities

&+

—

DevOpsDays
DEVOPS DﬂN
DAY
Amsterdam Charlotte Dallas San Jose

Part 2: APl Breaches in H12022. July 21, 2022
Demo of Remediating the key API Breaches

APISecurity.io Weekly Newsletter OpenAPI Editor - Free Download

https://apisecurity.io/ https://42crunch.com/resources-free-tools/

29 | 42Crunch.com

https://apisecurity.io/
https://42crunch.com/resources-free-tools/

