
Benefits of a Positive 
Security Model for APIs 



The Speakers

Colin Domoney

Developer Advocate at 
42Crunch

Michael Farnum

CTO at Set Solutions



Main Points

AppSec Tooling and the 
Negative Security Model

Issues between Security 
and Development

Frustration of 
Developers

Benefits of a Positive 
Security Model in APIs

Creating empathy for 
the Developer

Reducing Developer 
fatigue



Developer 

Frustration

and

Fatigue



API Security vs Web Security
OWASP API Security Top 10 OWASP Top 10

API1:2019 Broken Object Level Authorization A01:2021-Broken Access Control 

API2:2019 Broken User Authentication A02:2021-Cryptographic Failures 

API3:2019 Excessive Data Exposure A03:2021-Injection 

API4:2019 Lack of Resources & Rate Limiting A04:2021-Insecure Design 

API5:2019 Broken Function Level Authorization A05:2021-Security Misconfiguration

API6:2019 Mass Assignment A06:2021-Vulnerable and Outdated Components 

API7:2019 Security Misconfiguration A07:2021-Identification and Authentication Failures

API8:2019 Injection A08:2021-Software and Data Integrity Failures 

API9:2019 Improper Assets Management A09:2021-Security Logging and Monitoring Failures

API10:2019 Insufficient Logging & Monitoring A10:2021-Server-Side Request Forgery



Traditional Application Security Tooling

SAST DAST

• SAST — wasn’t designed for 
API-centric applications. Complex data 
flow paths or unsupported frameworks 
reduce the accuracy of a SAST analysis 
since the model may be incomplete or 
inaccurate.

• DAST — lacks context of APIs. DAST 
tools can’t provide an intelligent 
assessment of API security.

• SCA – useful but not sufficient

• WAF – Negative model can miss 
API-specific attacks

https://thenewstack.io/application-security-tools-are-not-up-to-the-job-of-api-security/

https://thenewstack.io/application-security-tools-are-not-up-to-the-job-of-api-security/


Positive Model vs Negative Model

Allowlist

• Allowed data types strong defined and 
enforce in OAS mode

• Data format can be precisely defined

• Operations can be fully specified too

Only allow data conforming to 
specification — anything else is an error

Only allows “known good”

Blocklist

• Attempts to interpret data based on the 
runtime context i.e., Javascript, HTML

• Attempt to block what shouldn’t be 
present in a given context 

• Can easily be subverted with encoding, 
etc.

Attempts to block “known bad”

vs



API Definitions/Specifications
• OAS forms a definitive contract for 

all downstream development

• OAS allows for a precise definition of 
request and response data types

• OAS allows operations to be tightly 
specified

• OAS allows security primitives to be 
specified 

• Extensions allow for additional 
primitives to be included



Using OAS to “Shift Left”

OAS file(s)
API 

back-end 
code

42Crunch 
Conformance 

Scan

42Crunch 
Security Audit Code generation

Code introspection



A Layered Approach to API Security
• Dedicated API security tooling is essential as 

the final layer of defenses allowing for:
• Validation of OAS specifications
• Verification of API implementation
• Runtime protection of APIs
• API discovery and inventory
• Integration into IDEs and CI/CD

• A well established AppSec process is vital to 
ensure that basic coding and implementation 
errors are detected in the build process

• SAST, DAST, and SCA are the tools of the trade 
for detecting OWASP Top 10 type issues.

• Unfortunately, such tools are not specifically 
tailored for API development and may lead to 
gaps in coverage.

• DevOps emphasizes collaboration between 
Development and Operations teams to ensure 
high-velocity delivery of quality applications in 
a repeatable, automated manner.  

• Without DevOps, API teams may struggle to 
produce quality APIs in a repeatable manner 
which may impact API security. 



A Layered Approach to API Security
API management portals and gateways are
essential to the operation of APIs at scale, and
security features should be leveraged to
provide another layer of protection.

A dedicated API Security platform is essential
as the ultimate layer of defense allowing for:

• Validation of OAS specifications
• Verification of API implementation
• Runtime protection of APIs
• API discovery and inventory
• Integration into IDEs and CI/CD

A well established AppSec process is vital to
ensure that basic coding and implementation
errors are detected in the build process.
Traditional security tools (WAF, SAST, DAST) are
not specifically tailored for API development
and are likely to lead to gaps in coverage.

DevOps emphasizes collaboration between
Development and Operations teams to ensure
high-velocity delivery of quality applications
in a repeatable, automated manner.



Six Domains of API Security



Shift-Left, Shield-Right

Code in  
security at 
design time

Document
& audit API 

contract

API vulnerability 
scanning in 

CI/CD pipeline

Security policy
enforced

at runtime

SHIFT-LEFT 
WITH SECURITY AS CODE

SHIELD-RIGHT 
RUNTIME PROTECTION

01
Design

02
Develop

03
Integrate & Test

04
Deploy & Protect



The Developer-First Approach
SECURITY MANAGEMENT & GOVERNANCE

Visibility & control of security policy enforcement throughout API lifecycle for security teams.

INTEGRATED ACROSS API LIFECYCLE
Continuous security enforcement across IDE, CI/CD and at runtime.

API AUDIT
Lock down your API’s definitions 

to reduce the attack surface and remove 
potential security gaps.

API SCAN
Dynamic runtime testing of your API 

to ensure compliance with 
API Contracts.

API PROTECT
Protect each API with an API 

micro-firewall to distinguish legitimate 
traffic from malicious API attacks. 

BENEFITS:             AUTOMATION   -    COMPLIANCE     -     COST SAVINGS    -    TIME TO MARKET



Questions?



What about restrictions that are not expressed in the spec?
e.g. account api states how to return account information 
but not that accounts should only be returned if the end 

user is the owner of that account?



So what does Set Solutions do, and how might they 
enhance the 42c experience?



re: BOLA & 42c - what sort of authz works best with 42c 
and JWT? resource/policy/role/claims?







https://www.youtube.com/setsolutions



Thank you


