
1

About our Speakers

Introduction

Colin Domoney
API Security Research Specialist & Developer
Advocate

Editor of APISecurity.io

Dr. Philippe De Ryck

Web Security Expert

Pragmatic Web Security

42Crunch

Housekeeping Rules

• All attendees muted
• Questions via chat window
• Recording will be shared on-demand
• Polling questions

Broken function level authorization5

Lack of resources & rate limiting4

Excessive data exposure3

Broken user authentication2

Broken object level authorization1

Insufficient logging & monitoring10

Improper assets management9

Injection8

Security misconfiguration7

Mass assignment6

API Security

Broken function level authorization5

Lack of resources & rate limiting4

Excessive data exposure3

Broken user authentication2

Broken object level authorization1

Insufficient logging & monitoring10

Improper assets management9

Injection8

Security misconfiguration7

Mass assignment6

API Security

https://www.freecodecamp.org/news/responsible-disclosure-how-i-could-have-hacked-all-facebook-accounts-f47c0252ae4d/

"I tried to brute force the 6 digit code on
www.facebook.com and was blocked after
10–12 invalid attempts."

"Then I looked out for the same issue on
beta.facebook.com and mbasic.beta.facebook.com."

"Interestingly, rate limiting was missing from forgot
password endpoint."

TREAT YOUR APIS
LIKE YOUR CHILDREN

Keep track where you put them,
regularly check up on them,
keep them out of trouble.

#9 Improper Assets Management

YOUR ATTACK
SURFACE

 =
EVERY EXPOSED API

Keep track of the assets you deploy,
assign responsibilities for assets,
and maximize API re-use.

#9 Improper Assets Management

Polling Question 1: (Multiple Choice)

How are you tracking and managing your API
inventory?

1. Not at all

2. Manually (spreadsheet tracker, etc)

3. Via API management or gateways

1. Active discovery (via code repositories, asset
inventory, etc)

Polling Question 1: (Multiple Choice)

How are you tracking and managing your API
inventory?

Attendee Question

Many companies to pen testing. Doesn't it solve the
problems you mentioned here?

Attendee Question

The 42 Crunch Platform relies on a valid
OpenAPI Spec File. Do you have any
good recommendations of libraries for
various languages like
Node, Golang, Python that'll help
generate these valid files? I know
Swashbuckle is really good for .NET.

A Python Flask API endpoint

1
2
3
4
5

@app.route('/')
def my_first_api_endpoint():
 json_data = json.loads(request.data)
 ...
 return "", 200

Which HTTP methods are
accepted by this endpoint?

https://portswigger.net/daily-swig/overlooked-vulnerabilities
-in-graphql-open-the-door-to-cross-site-request-forgery-attacks

A Python Flask API endpoint

1
2
3
4
5

@app.route('/', methods=['POST'])
def my_first_api_endpoint():
 json_data = json.loads(request.data)
 ...
 return "", 200

Flask defaults to GET, but supports
explicit configuration of allowed

HTTP methods

RESTRICT
HTTP METHODS

Ensure your API only accepts expected HTTP
methods, both using code analysis and
dynamic testing techniques.

#7 Security Misconfiguration

https://portswigger.net/daily-swig/grafana-web-security-vulnerability-opened-a-plethora-of-attack-possibilities

A Python Flask API endpoint

1
2
3
4
5

@app.route('/', methods=['POST'])
def my_first_api_endpoint():
 json_data = json.loads(request.data)
 ...
 return "", 200

By default, Flask accepts any content
type, including JSON, form-based
content types, and "text/plain"

1
2
3
4
5

POST /tasks
Host: api.example.com
Content-Type: application/json

{ "title": "Drink milk", "description": "Need strong bones" }

1
2
3
4
5

POST /tasks
Host: api.example.com
Content-Type: text/plain

{ "title": "Drink milk", "description": "Need strong bones" }

1
2
3
4
5

POST /tasks
Host: api.example.com
Content-Type: text/plain; application/json

{ "title": "Drink milk", "description": "Need strong bones" }

A lesser naïve server could
still be content with seeing

"application/json"
somewhere in the header

Sending such a request from
the user's browser falls under
CORS restrictions enforced by

the browser

A naïve server accepts
anything that parses as JSON,

allowing the attacker to
bypass CORS restrictions

Restricting content types in Flask

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Decorator to restrict content types
def content_type(allowed_content_type):
 def decorated(f):
 @wraps(f)
 def wrapper(*args, **kwargs):
 ct = request.headers.get('Content-Type', '')
 if ct.lower() == allowed_content_type.lower():
 return f(*args, **kwargs)

 raise UnsupportedMediaType
 return wrapper
 return decorated

@app.route('/', methods=['POST'])
@content_type('application/json')
def my_first_api_endpoint():
 json_data = request.json
 ...
 return "", 200

This endpoint only accepts
POST requests with the

content type set to
"application/json"

RESTRICT HTTP
CONTENT TYPES

Ensure your API only accepts expected
content types, even when the unexpected
value looks somewhat correct

#7 Security Misconfiguration

A typical JSON response from an API

1
2
3
4

{
 "title": "Drink milk",
 "description": "<script>alert('XSS?')</script>"
}

When the content type of the response is not
properly configured, navigating a browser to
an API endpoint can result in code execution

in the browser

Properly set the response type
(application/json) and add the

X-Content-Type-Options: nosniff header

Photo by Richard Clark on Unsplash

Overview of best practice header configurations for APIs

1
2
3
4

Strict-Transport-Security: max-age 31536000
X-Content-Type-Options: nosniff
X-Frame-Options: DENY
Content-Security-Policy: frame-ancestors 'none'; sandbox; default-src 'none'

Apply these headers as a static
configuration on every API

endpoint

DEFENSE-IN-DEPTH
FOR YOUR APIS

Apply browser security headers to avoid
unintended side effects from the rendering
of API responses.

The trade-off between cost and benefit is
overwhelmingly positive!

#7 Security Misconfiguration

Broken function level authorization5

Lack of resources & rate limiting4

Excessive data exposure3

Broken user authentication2

Broken object level authorization1

Insufficient logging & monitoring10

Improper assets management9

Injection8

Security misconfiguration7

Mass assignment6

API Security

Lack of resources & rate limiting4

Denial of Service

Abusing application features

Exceeding usage restrictions

Large-scale exploitation

IT'S MORE THAN
DENIAL OF SERVICE

Denial of Service is only part of the picture.
Other abuse scenarios have a more direct
impact on the API and its data.

#4 Lack of resources & rate limiting

Infrastructure and
computation limitations

Application-level
input validation

/tasks?page=1&count=10

/tasks?page=1&count=1000000
Failing to enforce an upper limit

on seemingly unimportant
values can result in DoS

OpenAPI definitions support adding useful limits to values

1
2
3
4
5
6
7
8
9

10

/tasks:
 get:
 parameters:
 - in: query
 name: count
 required: true
 schema:
 type: integer
 minimum: 10
 maximum: 100

OpenAPI definitions are still your
best friend when it comes to
defining expected behavior

Infrastructure and
computation limitations

Application-level
input validation

Offloading responsibilities to
dedicated services/providers

Application-specific
rate limiting

Polling Question 2: (Multiple Choice)

Are you using GraphQL in your organization?

1. Yes, only internally

2. Yes, both internally and externally

3. Not yet, but in the pipeline

4. No, and not planning to

Polling Question 2: (Multiple Choice)

Are you using GraphQL in your organization?

Attendee Question

How can you assure that third-party APIs (where you in most
cases have no view on the code) adhere to best practices?

GraphQL accepts queries as input, making things … interesting

1
2
3
4
5
6
7

query dosQL {
 task (id: 1) {
 project {
 tasks {
 author {
 tasks {
 project
}}}}}}

A single GraphQL query can
abuse a circular relationship to

overload the server

Using graphql-depth-limit to avoid nested queries

1
2
3

app.use('/graphql', graphqlServer({
 validationRules: [depthLimit(10)]
}));

Using graphql-validation-complexity to avoid nested queries

1
2
3

app.use('/graphql', graphqlServer({
 validationRules: [createComplexityLimitRule(1000)]
}));

Limit the allowed cost of a
GraphQL query using

detailed cost estimates

A simple protection mechanism
limits the allowed nesting depth

of a GraphQL query

COMBINE VARIOUS
DEFENSIVE STRATEGIES

Defending against high-volume and feature
abuse attacks requires a combination of
• infrastructure-level security
• secure coding guidelines
• robust rate limiting mechanisms
• compartmentalized service architecture

#4 Lack of resources & rate limiting

https://www.alphabot.com/security/blog/2020/elixir/Remote-code-execution-vulnerability-in-Elixir-based-Paginator-project.html
https://blog.pentesteracademy.com/hacking-jwt-tokens-blind-sqli-efa2799f0e95
https://blog.sonarsource.com/nosql-injections-in-rocket-chat

INJECTION STILL
EXISTS

Eradicating injection vulnerabilities requires
robust following of secure coding guidelines,
complemented with static code analysis

#8 Injection

Polling Question 3: (Multiple choice)

What techniques are you using to detect and
defend against injection attacks in your APIs?

1. SAST

2. DAST

3. Pen-testing

4. Code reviews and inspections

Polling Question 3: (Multiple choice)

What techniques are you using to detect and
defend against injection attacks in your APIs?

Different levels of logging serve different purposes

Logging is often used for debugging or informative purposes

Make sure you can use your logs as audit trails (what did a user do during a specific session?)

Security-relevant events should be logged as critical log messages

Security boundary

2 Send request with API key and JWT

API Key

API Key

API Key

1 Generate a signed JWT

3 Verify the API key

4Forward request

5Verify the API key

6Verify the JWT signature

If step 5 fails, there is a problem
with the API gateway

If step 5 succeeds, but step 6
fails, the API key may be

compromised

Different levels of logging serve different purposes

Logging is often used for debugging or informative purposes

Make sure you can use your logs as audit trails (what did a user do during a specific session?)

Security-relevant events should be logged as critical log messages

Monitoring turns data gathering into a detective security measure

Analyze logs and act on critical security-relevant events

Analyze system behavior (e.g., logs, traffic) and trigger alerts when anomalies are detected

Setup procedures to follow when abuse scenarios are detected

Photo by Mark Olsen on Unsplash

LOG AND MONITOR
Make logging useful, create high-security
alerts of failures that should never occur, and
make sure someone follows up on the logs!

#10 Insufficient logging & monitoring

a patched version of Struts2 fixes a remote code execution vulnerability
March 7th, 2017

attackers start probing Equifax systems using the Struts vulnerability
March 10th, 2017

Renewal of the expired certificate on the monitoring device
July 29th, 2017

Equifax uses Apache Struts 2 to build applications

attackers escalate the attack to full-scale data exfiltration
May 2017

a certificate used by a network monitoring device expires
December 2015

Equifax discovers the breach of their systems
July 29th, 2017

RUN FIRE DRILLS
Regularly imitate a security incident to
ensure that all defenses are working
properly

#10 Insufficient logging & monitoring

SPECIFY EXPECTED BEHAVIOR WITH OPENAPI DEFINITIONS

VERIFY EXPECTED BEHAVIOR ON RUNNING APIS IN THEIR
NATURAL HABITAT

READABILITY AND AUDITABILITY ENABLE SECURITY

KEY TAKEAWAYS FOR API SECURITY

49

https://apisecurity.io/

APISecurity.io

https://github.com/arainho/awesome-
api-security

Awesome API Security“Hacking APIs”

https://nostarch.com/hacking-apis

Further Information

https://apisecurity.io/
https://github.com/arainho/awesome-api-security
https://github.com/arainho/awesome-api-security
https://nostarch.com/hacking-apis

Further Information

Upcoming Activity

#1 API Security Community Weekly Newsletter #1 OpenAPI Editor – 400k+ users

Cisco & 42Crunch
“Adopting a Positive Security Model”

42Crunch
“Are your APIs Rugged?”

42Crunch & CyberProof
"How to put the Dev and the Sec

into your DevSecOps".

51

