
© COPYRIGHT 42CRUNCH | CONFIDENTIAL

KEITH CASEY
API Problem Solver

ISABELLE MAUNY
Chief Technical Officer

DAVID STEWART
Chief Executive Officer

OAuth, OWASP, Gateways and Meshes - Oh my!

HOW DO WE SECURE
APIS?

KEY QUESTIONS TO ASK YOURSELVES

• Do we know the APIs we have to protect ?

• Who is our target audience (partners, internal, anyone, …) ?

• Who is actually using our APIs ?

• Where do we validate that the data we are receiving is what we expect ?

• How do we ensure that we don’t leak data or exceptions?

• Where do we validate that the clients are the ones we expect

• Where do we validate the access tokens are the ones we expect

• Where do we authorize access to business data?

• Do I control what my application is made of ? (frameworks, images, etc.)

LAYERED APPROACH TO API SECURITY

Hypervisor, images (VM/Docker)

Intra-services communication (auth, azn, TLS)

App level security (auth, azn, libs, code, data)

OS / Network / Physical Access

REAL STORIES AND
LESSONS LEARNT!

UBER (SEPT 2019)
•The Attack

● Account takeover for any Uber account from a phone number

•The Breach
● None. This was a bug bounty.

•Core Issues
● First Data leakage : driver internal UUID exposed through error message!

● Hacker can access any driver, user, partner profile if they know the UUID

● Second Data leakage via the getConsentScreenDetails operation: full account information is
returned, when only a few fields are used by the UI. This includes the mobile token used to
login onto the account

https://appsecure.security/blog/how-i-could-have-hacked-your-uber-account

https://appsecure.security/blog/how-i-could-have-hacked-your-uber-account

HARBOUR REGISTRY
• The Attack

● Privilege escalation: become registry administrator

• The Breach
● 1300+ registries with default security settings

• Core Issue
● Mass Assignment vulnerability allows any normal user to become an admin

POST /api/users
{“username”:”test”,”email”:”test123@gmail.com”,”realname”:”noname”,”passw
ord”:”Password1\u0021″,”comment”:null,
“has_admin_role” = True}

7

https://unit42.paloaltonetworks.com/critical-vulnerability-in-harbor-enables-privilege-escalation-from-zero-to-admin-cve-2019-16097/

Controlling Data Access

•Fine-grained authorisation in every controller layer

•Do not use IDs from API request, use ID from session instead (implement
session management in controller layer)

•Additionally:
● Avoid guessable IDs (123, 124, 125…)

● Avoid exposing internal IDs via the API

● Alternative: GET https://myapis.com/resources/me

•Prevent data scraping by putting rate limiting in place

https://myapis.com/resources/me

Controlling Data Exposure/Leakage

•Take control of your JSON schemas !
● Describe the data thoroughly and enforce the format at runtime (outbound)

● Review and approve data returned by APIs

•Catch all exceptions

•Never expose tokens/sensitive/exploitable data in API
responses

•Never rely on client apps to filter data : instead, create various
APIs depending on consumer, with just the data they need

API Authentication & Authorization
- Know your User

- Who is your user today? Who will be your user tomorrow?

- Understand the Use Cases
- Know what a user is allowed vs should do

- Think about Permissions sooner
- Make authorization simple, consistent, and predictable

Permissions (aka Scopes)

T-Mobile
• The Attack

● Despite having Authentication, the APIs didn’t
have authorization

• The Breach
● Decompiling the app or simple monitoring

uncovered the endpoint

● Attackers used the secret method of
“incrementing” to get all the records

• Core Issues
● The dev/security teams never applied any API

object-level authorization

● The security/compliance teams did have good
monitoring and were able to stop it at 7%

Panera
• The Attack

● Unauthenticated APIs powering the in-store kiosks
and mobile app

• The Breach
● Decompiling the app or simple monitoring

uncovered the data

• Core Issues
● The dev/security teams never applied any API

authentication/authorization

● The security/compliance teams never vetted these
systems for acceptable policies, etc

● Probably not the only one

Part of an Ongoing Pattern?

API ABUSE
• When your API is perfect

● API abuse vs API vulnerabilities

• When you have use cases not requiring login
● Onboarding, catalog browsing, etc

• When API keys and user auth are not enough
● Aggregators, impersonators, etc

Trump App (June 2020)
• The Attack

● API keys easily accessible (Twitter, Google, etc)

• The Breach
● None. This was a security research.

• Core Issues
● API keys could be exploited at scale.

● "However, a malicious hacker could
still use the keys to impersonate the
app, and much worse”

16
https://www.websiteplanet.com/blog/trump-app-vulnerability-report/

The App As A Key – Part 1

• The Attack
● Aggregator apps making unauthorized use of APIs

• The Breach
● None. This was all about maintaining control of the

business

• Core Issues
● Any API endpoint is accessible by anyone

● Don’t assume end users value their user credentials

● “…we want to control which data we share
and who we share it with…”

17
https://approov.io/customer/sixt

The App As A Key Part 2

• The Attack
● Bots automatically opening high volumes of accounts

• The Breach
● None. The purpose was to spam genuine users and/or

extract new account rewards

• Core Issues
● Onboarding is always a weak point

● Rate limiting is not effective here

● “Tens of thousands of bot accounts could have
been created, and they might have generated
tons of spamming activity.”

18
https://approov.io/customer/nimses

EQUIFAX AND MANY MORE (2017)
• The Attack

● Remote command injection attack: server executes commands written in ONGL language when a
Content-Type validation error is raised.

• Core Issue
● Unpatched Apache Struts library, with remote command injection vulnerability, widely exploited during

months.

https://blog.talosintelligence.com/2017/03/apache-0-day-exploited.html

Stay on top of your code!
•Keep systems and software at latest level

•Limit your external dependencies

•Control those dependencies in-house
(enterprise repository)

•No Trust !! Continuously test for
vulnerabilities and leaking secrets (OS,
libraries, docker images, kubernetes
deployment files, etc.)

•Automation is key!

Example: Kubernetes breach via docker images
https://www.optiv.com/explore-optiv-insights/source-zero/anato
my-kubernetes-attack-how-untrusted-docker-images-fail-us

https://www.optiv.com/explore-optiv-insights/source-zero/anatomy-kubernetes-attack-how-untrusted-docker-images-fail-us
https://www.optiv.com/explore-optiv-insights/source-zero/anatomy-kubernetes-attack-how-untrusted-docker-images-fail-us

WHAT NOW ?

•Print the questions at the beginning of this session on a big piece of paper!

•Pick your battles
● What are your most sensitive APIs, bringing the highest risk ?

● Establish a Threat model

•Start worrying about API Security at design time
● Involve the stakeholders earlier

● A vulnerability discovered at production time costs up to 30x more to solve

•Keep enhancing security, reviewing current API usage
● Security is not applied once forever - It evolves !

•Automate Security Deployment (DevSecOps)

• Monitor, Learn and Improve

© COPYRIGHT 42CRUNCH | CONFIDENTIAL

KEITH CASEY
API Problem Solver

ISABELLE MAUNY
Chief Technical Officer

DAVID STEWART
Chief Executive Officer

Thank You for attending !

