
Securing an API World

A POSITIVE
SECURITY MODEL

FOR APIS
ISABELLEMAUNY

ISABELLE@42CRUNCH.COM

mailto:isabelle@42crunch.com

Introducing Security
Models

 © COPYRIGHT 42CRUNCH | CONFIDENTIAL

NEGATIVE SECURITY MODEL (BLACKLIST)

3

Access Allowed
by default

Block access for
suspicious traffic

Threats centric

 © COPYRIGHT 42CRUNCH | CONFIDENTIAL

POSITIVE SECURITY MODEL (WHITELIST)

4

Access Denied by
default

Allow Access only
to approved

traffic

Trust centric

 © COPYRIGHT 42CRUNCH | CONFIDENTIAL

WHY A POSITIVE MODEL ?

Much stricter access control

Limited false positives

More efficient
✓ Simple vs. very complex regular expressions for

blacklisting

No need to update when new threats are
found

5

However…

 © COPYRIGHT 42CRUNCH | CONFIDENTIAL

KEEPING UP IS HARD…

A whitelist is only powerful if complete!

It requires lots of efforts to define and
maintain up to date with constant
applications changes

✓ High human cost, usually several people full
time

Traditionally been very hard to
implement

✓ Which is why default WAF model is blacklisting

7

 © COPYRIGHT 42CRUNCH | CONFIDENTIAL

…BUT APIS ARE DIFFERENT!

OpenAPI specification (OAS) can be
leveraged to describe the API contract.

Can be easily updated from code, or via
specialized tools, so the whitelist is always
in sync with the application.

You can start addressing security straight
from design time!

OpenAPI lets you build the ultimate
whitelist!

✓ And as bonus , you get better documentation!

8

OPENAPI  
INITIATIVE

 © COPYRIGHT 42CRUNCH | CONFIDENTIAL

HOW 42CRUNCH LEVERAGES OAS

9

Audit Service
performs 200+

security checks on
API Contract

Scan service
ensures API

implementation
conforms to API

contract

Protection service is
automatically

configured from
API contract

 © COPYRIGHT 42CRUNCH | CONFIDENTIAL

OWASP API SECURITY TOP 10

10

• API1	:	Broken	Object	Level	Authorisation	

• API2	:	Broken	Authentication	

• API3	:	Excessive	Data	Exposure	

• API4	:	Lack	of	Resources	&	Rate	Limiting	

• API5	:	Missing	Function/Resource	Level	Access	Control	

• API6	:	Mass	Assignment	

• API7	:	Security	Misconfiguration	

• API8	:	Injection	

• API9	:	Improper	Assets	Management	

• API10	:	Insufficient	Logging	&	Monitoring	

DOWNLOAD

https://apisecurity.io/encyclopedia/content/owasp/owasp-api-security-top-10-cheat-sheet.htm

Addressing API threats
with a positive model

 © COPYRIGHT 42CRUNCH | CONFIDENTIAL

EQUIFAX AND MANY MORE COMPANIES (2017)

The Attack
✓ Remote command injection attack: server executes commands written in ONGL language when a Content-Type

validation error is raised.

✓ Can also be exploited using the Content-Disposition or Content-Length headers

The Breach
✓ One of the most important in history: 147 millions people worldwide, very sensitive data

✓ Equifax got fined $700 million in Sept 2019

Core Issue
✓ Remote command injection vulnerability in Apache Struts widely exploited during months.

12

A2

A3

A4

A5

A6

A10

A9

A8

A7

A1

https://blog.talosintelligence.com/2017/03/apache-0-day-exploited.html

 © COPYRIGHT 42CRUNCH | CONFIDENTIAL

CONTENT-TYPE IN OAS

Declare “consumes” at API or operation level

✓ Limits Content-Type header value to specific mime types

Declare all request headers

13

"consumes": [
 “application/x-www-form-urlencoded”,
 “application/json”
],

 © COPYRIGHT 42CRUNCH | CONFIDENTIAL

HOW 42CRUNCH ADDRESSES THE PROBLEM

At Audit time
✓ Detect that Consumes is not defined

At Scan time
✓ Inject wrong Content-Type

✓ Inject wrong formats for all listed headers

At Runtime
✓ Block any Content-Type that does not match Consumes value at Runtime

✓ Block any header not matching the description

✓ Block inbound data that does not match the Content-Type

14

 © COPYRIGHT 42CRUNCH | CONFIDENTIAL

HARBOUR REGISTRY

The Attack
✓ Privilege escalation: become registry administrator

The Breach
✓ 1300+ registries with default security settings

Core Issue
✓ Mass Assignment vulnerability allows any normal user to become an admin

✓

POST /api/users
{“username”:”test”,”email”:”test123@gmail.com”,”realname
”:”noname”,”password”:”Password1\u0021″,”comment”:null,
“has_admin_role” = True}

15

A2

A3

A4

A5

A6

A10

A9

A8

A7

A1

https://unit42.paloaltonetworks.com/critical-vulnerability-in-harbor-enables-privilege-escalation-from-zero-to-admin-cve-2019-16097/

 © COPYRIGHT 42CRUNCH | CONFIDENTIAL

HOW OAS CAN BE USED ?

Describe inbound schema for all requests

Use different schemas by operation (retrieve
user data vs. update user data)

16

 "UsersItem": {
 "type": "object",
 "additionalProperties": false,
 "properties": {
 "_id": {
 "type": "number",
 "format": "integer",
 "minimum": 0,
 "maximum": 999999
 },
 "email": {
 "type": "string",
 "format": "email",
 "pattern": “<email_regex>”,
 "minLength": 10,
 "maxLength": 60
 },…

 "is_admin": {
 "description": "is admin",
 "type": "boolean"
 },
 …

 © COPYRIGHT 42CRUNCH | CONFIDENTIAL

HOW 42CRUNCH ADDRESSES THE PROBLEM

At Audit time
✓ Detects that schemas are not associated to requests

✓ Analyzes how well data is defined (patterns, min, max, enums)

✓ Highlights usage of “additional properties”

At Scan time
✓ Injects additional properties

✓ Injects improper data

At Runtime
✓ Enforces schema definition

✓ Enforces Additional Properties restrictions

✓ Block non-declared VERBs (block unwanted POST)

17

 © COPYRIGHT 42CRUNCH | CONFIDENTIAL

UBER (SEPT 2019)

The Attack
✓ Account takeover for any Uber account from a phone number

The Breach
✓ None. This was a bug bounty.

Core Issues
✓ First Data leakage : driver internal UUID exposed through error message!

✓ Second Data leakage via the getConsentScreenDetails operation: full account information is
returned, when only a few fields are used by the UI. This includes the mobile token used to
login onto the account

18

A2

A3

A4

A5

A6

A10

A9

A8

A7

A1

 © COPYRIGHT 42CRUNCH | CONFIDENTIAL

HOW OAS CAN BE USED ?

Describe thoroughly all potential responses

Define the produces value
✓ Which data will be returned

Use different schemas by operation (retrieve
user data vs. update user data)

19

”produces”: [
 "application/json"
],

"responses": {
 "200": {
 "description": “successful..”,
 "schema": {
 "type": "array",
 "minItems": 0,
 "maxItems": 50,
 "items": {
 "$ref": "#/definitions/
UsersItem"
 }
 }
 "403": {
 "description": “invalid…”,
 "schema": {
 "type": "object",
 "properties": {
 "message": {
 "type": "string",
 "pattern": "xxxx",
 "minLength": 1,
 "maxLength": 255
 },
 “success”: …

 © COPYRIGHT 42CRUNCH | CONFIDENTIAL

HOW 42CRUNCH ADDRESSES THE PROBLEM

At Audit time
✓ Analyzes which responses should be defined depending on verb (GET, POST, …)

✓ Detects that schemas are not associated to responses

✓ Analyzes how well data is defined (patterns, min, max, enums)

✓ Highlights usage of “additional properties”

At Scan time
✓ Validates responses are all defined in contract

✓ Validates responses match schemas defined in contract

At Runtime
✓ Block responses that do not match “Produces” value (unknown mime-type)

✓ Blocks responses that do not match schema definition

✓ Block non-declared responses (unknown HTTP codes)

✓ Enforces Additional Properties restrictions

20

 © COPYRIGHT 42CRUNCH | CONFIDENTIAL

A POSITIVE MODEL FOR API SECURITY WITH 42CRUNCH

Leverage OAS and build the ultimate whitelist at
design time!

✓ Right in your IDE with our VSCode extension

✓ Thorough report with priorities to act upon

Ensure API Contract is up to date via automated
audit and scan at integration/testing time

✓ Include API Contract audit and scan in your favorite CI/CD
pipeline

Leverage the power of OAS to protect your APIs at
runtime

✓ Lightweight, Kubernetes-ready firewall to automatically
protect your APIs from API contract!

21

Securing an API World

CONTACT US:

INFO@42CRUNCH.COM

Start testing your API contracts today on apisecurity.io!

mailto:info@42crunch.com
http://www.42crunch.com
http://apisecurity.io

 © COPYRIGHT 42CRUNCH | CONFIDENTIAL

RESOURCES

• 42Crunch Website

• Free OAS Security Audit

• OpenAPI VS Code Extension

• OpenAPI Spec Encyclopedia

• OWASP API Security Top 10

• APIsecurity.io

https://42crunch.com/
https://apisecurity.io/tools/audit/
https://marketplace.visualstudio.com/items?itemName=42Crunch.vscode-openapi
https://apisecurity.io/encyclopedia/content/api-security-encyclopedia.htm
https://apisecurity.io/encyclopedia/content/owasp/owasp-api-security-top-10.htm
https://apisecurity.io/

