
Are You Properly Using JWTs?
Philippe Leothaud, CTO and Founder

SLIDE

2

© COPYRIGHT 42CRUNCH

Phil Leothaud

CTO and Founder
42Crunch

Kristin Davis

Head of Marketing
42Crunch

SLIDE

3

© COPYRIGHT 42CRUNCH

What are JWTs The crypto behind it

SLIDE

4

© COPYRIGHT 42CRUNCH

Why do we need
tokens?

User Client App Identity Provider Your API/Resource

7Validate Authorization Code + Client ID + Client Secret

3
Redirect to login/authorization prompt

5
Authorization Code

8
Access Token

1
Click login link

4
Authenticate and Consent

9
Request user data with access token

10

Response

2

Authentication Code Request to / authorize

6

Authorization Code + Client ID + Secret to /oauth/token

SLIDE

5

© COPYRIGHT 42CRUNCH

What are JWTs

• JWTs (RFC 7519) are a convenient way to transport over HTTP base64-URL encoded
claims across parties in JSON format.

• Claims in a JWT are encoded as a JSON object that is used as the payload of a JSON
Web Signature (JWS) structure or as the plaintext of a JSON Web Encryption (JWE)
structure.

• They are easy to use, supported by many libraries in more or less all programming
langages, and therefore pervasive.

SLIDE

6

Tokens can be anything
ec9f8fbb-a357-4fb6-a6af-de6ce54fb3d2

SLIDE

7

© COPYRIGHT 42CRUNCH

{

"user":“elmer@foodbeat.com",

"is_admin":false,

"twitter":"elmer.foodbeat",

"iss":1579551140,

"exp":1579551740

}

Why JSON Web Tokens?
• Transported info right in the token

• No need for shared databases

• No extra API calls

• JSON is easy to use in code

SLIDE

8

© COPYRIGHT 42CRUNCH

Common Use Cases
• OAuth2

• OpenID Connect id_token

• Any JSON payload that needs to
be protected and sent

SLIDE

9

© COPYRIGHT 42CRUNCH

POST /book HTTP/1.1
Content-Type: application/json
Accept: application/json
Host: resource.catalog.library
Authorization: Bearer
IUojlkoiaos298jkkdksdosiduIUiopo
{
"isbn":"9780201038019",
"author":"Donald Knuth",
"title":"The Art of Computer
Programming"
}

Tokens are Encoded
• To pass them in URLs and

headers

• Base64URL encoding is used

• Encoding != signing

• Encoding != encryption

SLIDE

10

© COPYRIGHT 42CRUNCH

How do you know that
the token is from a
specific source?
• They are signed/encrypted

• In AuthN scenarios IdP signs
the new token:

1. Calculates signature
2. Appends it to token

• Client passes the token to
resource as is

• Resource verifies the signature

User Client App Identity Provider Your API/Resource

7Validate Authorization Code + Client ID + Client Secret

3
Redirect to login/authorization prompt

5
Authorization Code

8
Access Token

1
Click login link

4
Authenticate and Consent

9
Request user data with access token

10

Response

2

Authentication Code Request to / authorize

6

Authorization Code + Client ID + Secret to /oauth/token

SLIDE

11

© COPYRIGHT 42CRUNCH

(some) JOSE Header Parameters
• alg: the signing algorithm (used even when JWT is encrypted!). Can be none, RS256, HS256, … - full list in

RFC7518
• enc: the Key encryption algorithm when using encryption

• jku: URI to a set of JSON-encoded public keys one of which corresponds to the key used to sign the token
• jwk: public key corresponding to the one used to sign the token
• kid: hint indicating which key was used
• x5u: URI for X.509 public key certificate or certificate chain
• x5c: X.509 public key certificate or certificate chain

• x5t: encoded SHA-1 thumbprint / digest of the DER encoding of X.509 certificate
• x5t#S256: SHA-256 thumbprint
• … and some more -> See RFCs from 7515 to 7519 ;-)

https://tools.ietf.org/html/rfc7518

SLIDE

12

© COPYRIGHT 42CRUNCH

Signing Process
1. Create JOSE header

2. Encode it

3. Create payload (does not have to
be JSON)

4. Encode it too

5. Concatenate with . in between

6. Compute signature using alg

7. Base64URL-encode and append

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXV

CJ9.eyJ1c2VyIjoiZG1pdHJ5QDQyY3J1b

mNoLmNvbSIsImlzX2FkbWluIjpmYWxzZS

widHdpdHRlciI6IkRTb3RuaWtvdiIsIml

zcyI6MTU3OTU1MTE0MCwiZXhwIjoxNTc5

NTUxNzQwfQ.n34z-LWu4INXl8-Cgac-

Ues7r99xgbt_A4aHuCAZRLU

SLIDE

13

© COPYRIGHT 42CRUNCH

Attacks and how to prevent

SLIDE

14

An API should not blindly trust
anything it receives from the client.

SLIDE

15

© COPYRIGHT 42CRUNCH

None Algorithm Attack
1. Attacker modifies or creates a

token

{
"alg": "HS256",
"typ": "JWT"

}.
{

"user":"elmer@foodbeat.com",
"is_admin":false

}.
X0Wglk3qxprPLVTw2cYzuwEcJEEfED2F5Xgm
TdQFY7A

SLIDE

16

© COPYRIGHT 42CRUNCH

None Algorithm Attack
1. Attacker modifies or creates a

token

{
"alg": "HS256",
"typ": "JWT"

}.
{

"user":"elmer@foodbeat.com",
"is_admin":true

}.
X0Wglk3qxprPLVTw2cYzuwEcJEEfED2F5Xgm
TdQFY7A

SLIDE

17

© COPYRIGHT 42CRUNCH

None Algorithm Attack
1. Attacker modifies or creates a

token

2. They set alg to None in the
header

3. And send it without a signature

4. Since alg is None, this is a
valid JWS

{
"alg": "None",
"typ": "JWT"

}.
{

"user":"elmer@foodbeat.com",
"is_admin":true

}.

eyJhbGciOiAiTm9uZSIsCiAgInR5cCI6ICJK
V1QifQ.
eyJ1c2VyIjoiZG1pdHJ5QDQyY3J1bmNoLmNv
bSIsImlzX2FkbWluIjp0cnVlfQ.

SLIDE

18

© COPYRIGHT 42CRUNCH

{
"alg" : "RS256",
"typ" : "JWT“

}.
{

"user":“elmer@foodbeat.com",
"is_admin":false

}.
RSA signature with RSA private key

Changed to:
{
"alg" : “HS256",
"typ" : "JWT“

}.
{

"user":“elmer@foodbeat.com",
"is_admin":true

}.
HMAC signature with RSA public key

HMAC Algorithm Attack
• HMAC is symmetric: same shared

key used to sign & verify

• RSA is asymmetric: public & private
keys

• Attacker:
1. Puts HS256 instead of RS256
2. Signs with public RS256 key

• API code blindly uses public RSA key
with HMAC alg to verify signature

SLIDE

19

© COPYRIGHT 42CRUNCH

Lack of Signature Validation

1. Developers may not validate signature at all

2. They blindly trust the signature passed in the header

3. For nested JWTs, signature must be validated at each level

SLIDE

20

© COPYRIGHT 42CRUNCH

signature = HMAC-

SHA256(base64urlEncode(header) +

'.' + base64urlEncode(payload),

"qwerty")

Bruteforce Attack on
Signature
1. Developers use a low entropy key

2. Attackers intercept a valid token

3. They now know the alg and have a token
with valid signature

4. They can run a dictionary attack figure
out the key

5. Once the signature matches they know
your key and can forge tokens

SLIDE

21

© COPYRIGHT 42CRUNCH

Leaked Keys
• Source code repos

• Directory traversals

• XXE

• SSRF

SLIDE

22

© COPYRIGHT 42CRUNCH

{
"alg" : "HS256",
"typ" : "JWT",
"kid" : "secret/hmac.key“

}

change to:
{
"alg" : "HS256",
"typ" : "JWT",
"kid" : "../../styles/site.css“

}

kid as a file path
1. Developers use a filepath for the key

2. Developers do not sanitize the value

3. Attackers specify any valid path with
known content

4. They use symmetric alg and that
known content

SLIDE

23

© COPYRIGHT 42CRUNCH

Unsafe SQL retrieval:

SELECT Key WHERE ("key = ${kid}")

Attack value:

"kid": "blah' UNION SELECT 'key';--"

kid with SQL Injection
1. Developers use unsafe code to

retrieve key from database

2. Attackers supply invalid key ID with
a SQL injection resulting in known
result

SLIDE

24

© COPYRIGHT 42CRUNCH

File.open(key_filename), system(),

exec(), etc.

{

"kid":"'filename' | whoami;“

}

Command Injection
1. Developers use header parameter as

a filename and unsafe operation to
read the file

2. Attackers send an injection string
and get their commands executed
on the server

SLIDE

25

© COPYRIGHT 42CRUNCH

Substitution Attack:
Different Recipient
• Attacker gets a valid token for one

organization / resource and uses it with
another

• To prevent this, make each token
specific to the issuer, subject, resource:

• iss: URL of the IdP

• sub: to whom it was issued

• aud: audience for the token

Authorization
Server Org. 1

Used
by

Used
by

Derived from

Issues Token

for Org. 1

{
“sub”: “joe”
“role”: “admin”

}

No
rm

al
 u

se

Mali
cio

us
 u

se

Private Signing Key Public Signing Key

Org. 2

Used
by

Attacker (Joe)

Gets Valid

Token for Org. 1

SLIDE

26

© COPYRIGHT 42CRUNCH

Substitution Attack:
Cross JWT
• Lack of exact matching within the same

organization

• E.g. check for "aud": "myorg/*" instead of
"aud":"myorg/finance-ops"

• Can also happen in multitenancy, site
hosting, or any subdomains with any
user content

• Use exact matching to protect yourself

Used
by

Used
by

Derived from

{
“sub”: “joe”
“role”: “write”

}

Norm
al use

Mali
cio

us
 u

se

Private Signing Key Public Signing Key

Finance Ops

Used
by

Attacker (Joe)

Mail Server

Issues Token
for Mail Server

SLIDE

27

© COPYRIGHT 42CRUNCH

{

"user":"elmer@foodbeat.com",

"is_admin":false,

"iss":1579551140,

"exp":1579551740

}

Intercept and Reuse
• Attacker gets a hold of the token

• Since this is a bearer token with no
time limits – they just keep using it
as long as they want

• Set short time limits: exp, nbf

• Set minimal scopes

• Tie JWT to a specific client

SLIDE

28

© COPYRIGHT 42CRUNCH

8
Access Token

These Tokens are not
Opaque
• Client actually gets the token

• The tokens are not encrypted

• Rogue client can decode the token and
get valuable info from it:

• PII or other exposed info

• Information about internals

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpX
VCJ9.eyJ1c2VyIjoiMTIzNDU2Nzg5MCI
sImlzX2FkbWluIjpmYWxzZSwidHdpdHR
lciI6IkRTb3RuaWtvdiJ9.kIr0UrbBUT
eqZcaUPDDj5USO3mENzNQoENi4xcWYf-
U

{
"user":“elmer@foodbeat.com",
"is_admin":false,
"twitter":“elmer.foodbeat"

}

SLIDE

29

© COPYRIGHT 42CRUNCH

BASE64URL-ENCODE(UTF8(JOSE Header)).

BASE64URL-ENCODE(JWE Encrypted Key).

BASE64URL-ENCODE(Initialization

Vector).

BASE64URL-ENCODE(Cyphertext).

BASE64URL-ENCODE(Authentication Tag)

Solution #1: Encryption
• JOSE header gets 2 extra

parameters:

• enc: algorithm for content encryption

• zip: optional compression algorithm

• Algorithms used provide both
integrity and confidentiality

SLIDE

30

© COPYRIGHT 42CRUNCH

{
"user":“elmer@foodbeat.com",
"is_admin":false,
"twitter":“elmer.foodbeat“

}

{
"sub":"ec9f8fbb-a357-4fb6-

a6af-de6ce54fb3d2"
}

Solution #2: Phantom
Tokens
• Give clients tokens with bare

minimum information

• At the edge, exchange that phantom
token to a full JWT that is only used
within internal, server-side network APIs &

Microservices

OAuth & OIDC
Clients

Identity Provider

SLIDE

31

© COPYRIGHT 42CRUNCH

Pattern and anti-patterns

SLIDE

32

© COPYRIGHT 42CRUNCH

Is JWT right for you?
• HTTP headers have size limits (~ 8KB)
• Use of JWT can be an overkill
• They are a poor replacement of web

app session tokens:
• Much larger than a cookie
• DB is likely used anyway
• Web frameworks typically load users on

incoming requests anyway
• Cookies are signed and protected anyway
• Caching and other site optimization will

be a better solution than trying to persist
all data and state in a JWT in a cookie

SLIDE

33

© COPYRIGHT 42CRUNCH

Recommendations:
Shared Secrets
• Safely store and retrieve

• Must be complex

• Key sets identified by kid

• Keys required for encrypted
content validation

SLIDE

34

© COPYRIGHT 42CRUNCH

Recommendations:
Keys handling
• Safely store and retrieve

• Key sets identified by kid

• Keys required for encrypted
content validation

• A key should be used for one
and one only algorithm

SLIDE

35

© COPYRIGHT 42CRUNCH

Recommendations:
Internal Traffic and
Encryption

• Keep external tokens opaque

• Internal tokens can carry payloads

• Encrypt sensitive information

SLIDE

36

© COPYRIGHT 42CRUNCH

Recommendations:
Token Validation
• Follow standards for all claims and processes

• Perform Algorithm Verification

• Use Appropriate Algorithms

• Validate All Cryptographic Operations

• Ensure Cryptographic Keys have Sufficient Entropy

• Validate Issuer and Subject

• Use and Validate Audience

• Do Not Trust Received Claims (injections and SSRF
from kid and jku)

SLIDE

37

© COPYRIGHT 42CRUNCH

openapi: "3.0.0"
info:

version: 1.0.0
title: Swagger Petstore

servers:
- url: http://petstore.swagger.io/v1

paths:
/pets:

get:
summary: List all pets
operationId: listPets
tags:

- pets
parameters:

- name: limit
in: query

How much of that can be
externalized?

• OpenAPI Specification provides a
standard machine-readable contract for
APIs

• Includes: paths, operations, payloads,
responses, authentication, scopes

• Can be enforced by API Gateways and
API Firewalls

• JWT policies are not a part of OAS3

SLIDE

38

© COPYRIGHT 42CRUNCH

openapi: "3.0.0"
info:

version: 1.0.0
title: Swagger Petstore
servers:
- url: http://petstore.swagger.io/v1

paths:
/pets:

get:
x-42c-local-strategy:

x-42c-strategy:
protections:
- jwt-validation_0.1:

header.name: x-access-token
jwk.envvar: JWK_PUBLIC_RSA_KEY
authorized.algorithms:
- RS256
- RS384

parameters:
- name: limit

in: query

OpenAPI Security-as-Code
extensions from 42Crunch

• Define JWT server-side validation policies

• Can include any parameters and their
values

• Can be applied across APIs, within a
particular API, to a particular operation

• Can be audited during static code
analysis

• Can be enforced by API Firewalls

SLIDE

39

© COPYRIGHT 42CRUNCH

Additional Resources
• jwt.io

• Phantom tokens

• 42Crunch.com

• APIsecurity.io

https://jwt.io/
https://github.com/curityio/nginx_phantom_token_module
https://42crunch.com/
https://apisecurity.io/

THANK YOU
- questions -

Are You Properly Using JWTs? | Philippe Leothaud, CTO| 42crunch.com

