
42Crunch.com

API Breaches for H2 2022

13 December 2022

Colin Domoney

API Security Research Specialist & Developer Advocate

2 │ 42Crunch.com

About the Speaker

Introduction

Colin Domoney
API Security Research Specialist & Developer Advocate

Editor of APISecurity.io
Cyberbroof, Veracode, CA, Deutsche Bank

3 │ 42Crunch.com

Housekeeping Rules

• All attendees muted
• Questions via Q&A
• Recording will be shared

4 │ 42Crunch.com

API Security Framework
Framing the discussion

5 │ 42Crunch.com

To err is human

• Mistakes happen to everyone

• Mistakes can be very costly

• Mistakes are a learning opportunity

• Mistakes can often easily be detected

https://www.netflix.com/gb/title/70140358

https://www.netflix.com/gb/title/70140358

6 │ 42Crunch.com

Business logic
vulnerabilities

What is “API security”

OWASP API Security Top 10

API abuse

cases

 API governance API inventory

 Coding flaws Lack of skills Secrets management

 Vulnerable components/libraries OS vulnerabilities

7 │ 42Crunch.com

A layered approach to API security

API management portals and gateways are
essential to the operation of APIs at scale, and
security features should be leveraged to
provide another layer of protection.

A dedicated API Security platform is essential
as the ultimate layer of defense allowing for:

• Validation of OAS specifications
• Verification of API implementation
• Runtime protection of APIs
• API discovery and inventory
• Integration into IDEs and CI/CD

A well established AppSec process is vital to
ensure that basic coding and implementation
errors are detected in the build process.
Traditional security tools (WAF, SAST, DAST) are
not specifically tailored for API development
and are likely to lead to gaps in coverage.

DevOps emphasizes collaboration between
Development and Operations teams to ensure
high-velocity delivery of quality applications
in a repeatable, automated manner.

8 │ 42Crunch.com

The six pillars of API security

9 │ 42Crunch.com

Vulnerabilities in
review
Our favorite vulnerabilities in the
second-half of 2022

10 │ 42Crunch.com

#1: Australian telecommunications company

What happened?
Attackers were able to discover a publicly exposed endpoint which also did not require any authentication. This API
exposed highly sensitive customer information, including driver's license numbers, phone numbers, dates of birth, and
home addresses. The API also used sequential identifiers, allowing easy enumeration.

Impact:
Massive reputational and financial loss to the company. Loss of PII data of 10 million customers (including passport and
driver’s license details). Possibly up to A$ 140 million in breach costs.

Cause:
• Lack of authentication.
• Excessive information exposure.
• Easily guessable object identifiers.

Lessons learned:
• Numerous and painful.

11 │ 42Crunch.com

#1: Australian telecommunications company

Design:

• Failure to under PII requirements – leaked customer details
• Failed to capture any security requirements
• Relied on obscurity – hoping the API would not be discovered

Testing:
• Did not detect leakage of customer information
• Did not detect unauthenticated endpoint

Governance:

• Failure to prevent deployment of totally insecure API
• No control of sensitive customer information

Development:

• Very basic security or privacy implementation errors

12 │ 42Crunch.com

#2: Popular social media platform

What happened?
Cybercriminals traded user data of over 5.4 million users in a hacking forum. Attack had been leveraged over a period of
a year and resulted from abuse of a “search users” API endpoint.

Impact:
Cybercriminals were able to perform spear phishing attacks on users known to have accounts. Reputational damage.

Cause:
• Exposing “helpful” APIs that can be abused.
• Excessive information exposure (returning inconsistent error messages).

Lessons learned:
• Beware of unauthenticated APIs, regardless of how benign they seem.
• Use a consistent minimal implementation of an error handler.

13 │ 42Crunch.com

#2: Popular social media platform

Design:

• Failure to consider the implications of providing “search users” function.
• Failure to protect sensitive user data.

Testing:

• Did not detect leakage of user information.

Protection:

• Lack of rate limiting on public API allowing mass exfiltration.

Development:

• Excessive information exposure in error handler.

14 │ 42Crunch.com

#3: Crypto trading platform(s)

What happened?
Seemingly a rogue cryptocurrency bot could perform high volumes of automated trades on various platforms, resulting in
unconfirmed losses and a cessation of withdrawals in some cases.

Impact:
Although unconfirmed, the financial impact could be massive. Loss of investor faith in the cryptocurrency market,
scrutiny of regulators.

Cause:
• Leakage of 3rd party keys.
• Theft of 3rd party keys.

Lessons learned:
• Be wary of delegated key access.
• Review key access frequently, and revoke unused keys.

15 │ 42Crunch.com

#3: Crypto trading platform(s)

16 │ 42Crunch.com

#3: Crypto trading platform(s)

Design:

• Possibly a failure to implement a robust token management policy.

Governance:

• Failure to manage 3rd party tokens from theft by internal resources.
• Lack of audit of token use.

17 │ 42Crunch.com

#4: Helpdesk ticketing system

What happened?
Researchers discovered that an internal GraphQL API endpoint was sensitive to SQL Injection attacks. They demonstrated
a proof-of-concept that showed a leakage of user data via this injection.

Impact:
Minimal to responsible disclosure and rapid patching.

Cause:
• SQL Injection — 21 years and counting !

Lessons learned:
• Sanitize all external input in the context of your data sink.
• GraphQL is complex — make sure you understand the security implications.

18 │ 42Crunch.com

#4: Helpdesk ticketing system

Design:

• GraphQL SQL injection threats could have been identified earlier.

Testing:

• SQLi vulnerabilities can usually be detected with:
 - Penetration testing
 - Static code analysis

Protection:

• SQL injection payloads can usually be easily filtered with an
application-level firewall.

Development:

• Failure to use standard SQL injection protections.

19 │ 42Crunch.com

#5: File hosting service

What happened?
A file storage service had 150 of its internal GitHub repositories accessed by an attacker using phished API credentials.

Impact:
Apparently limited since the repositories contained mostly clones of public domain libraries. No customer data was
compromised.

Cause:
• Phishing attack on developers via CI/CD reset email.

Lessons learned:
• Beware of phishing emails (particularly unprompted password reset emails).
• API tokens are a key part of the supply chain.

20 │ 42Crunch.com

#5: File hosting service

Protection:

• GitHub did an exemplary job of detecting this API credential abuse.

Design:

• Possibly a failure to implement a robust token management policy.

Governance:

• Failure to manage 3rd party tokens from theft by internal resources.
• Lack of audit of token use.

Development:

• Failed to detect a phishing attack.

21 │ 42Crunch.com

#6 Popular social media platform (again)

What happened?
Security researchers disclosed the details of 3,200 mobile applications potentially leaking the platform’s API keys. In most
cases keys had been embedded into consumer applications.

Impact:
No known abuse or impact, but this attack could allow massively distributed bot activity against the platform.

Cause:
• Hard-coded keys.
• Lack of robust key management policy.

Lessons learned:
• Never hardcode API keys.
• As a provider, be able to detect and revoke stolen keys.

22 │ 42Crunch.com

#6 Popular social media platform (again)

Design:

• Failure to design adequate local key handling policy.

Testing:

• Code scanning would have detected hard-coded credentials easily.

Protection:

• Platform could have detected use of leaked keys and blocked access.

Development:

• Developers should have been aware of risks of hardcoded credentials.

23 │ 42Crunch.com

#7: Data center management platform

What happened?
Researchers discovered that they could perform a total compromise of a popular data center management platform by
stealing the web interface token and use CSRF methods to attack the underlying API.

Impact:
Limited in this case due to responsible disclosure and rapid remediation by vendor.

Cause:
• API that was vulnerable to CSRF based attacks.
• Very skilled attackers ;)

Lessons learned:
• Beware of the dangers lurking in your (not-so) hidden APIs.
• Make sure you understand the basics of web application request forgery protection.

24 │ 42Crunch.com

#7: Data center management platform

25 │ 42Crunch.com

#7: Data center management platform

26 │ 42Crunch.com

#7: Data center management platform

Design:

• Failure to adequately understand the risk of a CSRF-based attack.
• In-depth threat modeling may have identified risks.

Development:

• Developers could benefit from advanced web security training.
• Failure to implement standard controls correctly i.e. CORS

27 │ 42Crunch.com

#8: Load balancing appliance

What happened?
Researchers discovered that they could compromise a popular load-balancing appliance by stealing the web interface
token and use CSRF methods to attack the underlying API.

Impact:
Potentially serious due to the widespread use and impact. No reports of a successful compromise as yet.

Cause:
• API that was vulnerable to CSRF based attacks.

Lessons learned:
• Beware of the dangers lurking in your (not-so) hidden APIs.
• Make sure you understand the basics of web application request forgery protection.

28 │ 42Crunch.com

#8: Load balancing appliance

29 │ 42Crunch.com

#8: Load balancing appliance

Design:

• Failure to adequately understand the risk of a CSRF-based attack.
• In-depth threat modeling may have identified risks.

Development:

• Developers could benefit from advanced web security training.
• Failure to implement standard controls correctly i.e. CORS

30 │ 42Crunch.com

#9: Community platform

What happened?
Researchers discovered that they could access the logs of other forum groups by manipulation the request object
identifier.

Impact:
Low due to the relatively insensitive data, and rapid remediation.

Cause:
• Broken object-level authorization

Lessons learned:
• Never trust user supplied parameters.
• Always fully validate access rights to requested resources.

31 │ 42Crunch.com

#9: Community platform

32 │ 42Crunch.com

#9: Community platform

Design:

• Threat modeling and/or code review may have identified this weakness.

Testing:

• Simple cases of BOLA (such as this) can be identified with automated testing

Development:

• Developers could benefit from API security training.
• Always consider the origin of input parameters.

33 │ 42Crunch.com

#10: AI search tool

What happened?
Security researchers disclosed the details of 3,200 mobile applications potentially leaking the platform’s API keys. In most
cases, keys had been embedded into consumer applications.

Impact:
Limited with no known exploits.

Cause:
• Hard-coded keys.
• Lack of robust key management policy.

Lessons learned:
• Never hardcode API keys.
• As a provider, be able to detect and revoke stolen keys.

34 │ 42Crunch.com

#10: AI search tool

35 │ 42Crunch.com

#10: AI search tool

Design:

• Failure to design adequate local key handling policy.
• Failure to scope token access adequately.

Testing:

• Code scanning would have detected hard-code credentials easily.

Protection:

• Platform could have detected use of leaked keys and blocked access.

Development:

• Developers should have been aware of risks of hardcoded credentials.
• Provide a dedicated API endpoint for sensitive operations.
• Use a tightly scoped token to access this dedicated endpoint

(avoiding the use of global scope admin tokens)

36 │ 42Crunch.com

#11: Two popular vehicles

What happened?
A security researcher discovered who could access vehicle computers on two popular brands of vehicles and perform
remote commands such as sounding the horn or starting the vehicle!

Impact:
Fortunately, in this case, very limited but unimaginable if exploited by a bad actor.

Cause:
• Insufficient input sanitization.
• Poor regular expression design.

Lessons learned:
• Attacks on vehicles can have dramatic consequences.
• Critical controls such as vehicle ignition should be barred from remote access perhaps?

37 │ 42Crunch.com

#11: Two popular vehicles

38 │ 42Crunch.com

#11: Two popular vehicles

39 │ 42Crunch.com

#11: Two popular vehicles

Design:

• Failure to provide a full set of security requirements (MFA,
out-of-band, email verification)

• Threat modeling is essential for such scenarios.

Testing:

• Sensitive code (such as vehicle control) to be peer-reviewed by
security experts.

• Static code analysis would likely have detected the poor input
sanitization.

Protection:

• Critical operations should be verified by out-of-band authorization or
multi-factor access methods.

Development:

• Use robust input sanitization methods.
• Beware of hidden risks with regular expressions.

40 │ 42Crunch.com

The top-ranking issues

Vulnerability Count

Excessive information exposure (API3) 4

Hardcoded tokens 4

Security by obscurity 2

Cross-site request forgery 2

Broken object-level authorization (API1) 1

Lack of rate-limiting (API4) 1

SQL Injection 1

Broken authentication (API2) 1

Insecure default configuration (API7) 1

41 │ 42Crunch.com

Preventing API
vulnerabilities
How to avoid featuring in the next
webinar !

42 │ 42Crunch.com

Take 1

43 │ 42Crunch.com

Take 2

44 │ 42Crunch.com

Take 3

45 │ 42Crunch.com

Take 4

47 │ 42Crunch.com

Computer says no !

48 │ 42Crunch.com

Threat modelling

● Establish your attack surface
● Understand the:

 Use cases
 Abuse cases

● Mitigations and compensating
controls

● Expose assumptions and
misunderstandings

https://twitter.com/thegrugq/status/864023197145944064?s=20
https://twitter.com/thegrugq/status/864023197145944064?s=20

49 │ 42Crunch.com

Use narrow scoped tokens rather than keys

● Supply chain security is
increasingly important as apps are
assembled rather than written.

● Hyper automation requires
connectivity between systems using
APIs and their keys/tokens.

● These API keys/tokens now form
part of the overall supply chain.

● Limit their scope and duration

https://www.darkreading.com/attacks-breaches/the-next-gen
eration-of-supply-chain-attacks-is-here-to-stay

https://www.darkreading.com/attacks-breaches/the-next-generation-of-supply-chain-attacks-is-here-to-stay
https://www.darkreading.com/attacks-breaches/the-next-generation-of-supply-chain-attacks-is-here-to-stay

50 │ 42Crunch.com

Use standard libraries and components

● NEVER write your own cryptography
functions or methods

● Use standard libraries for common
functionality (and scan them for
vulnerabilities)

● Stand on the shoulder of giants (and
contribute fixes and improvements)

51 │ 42Crunch.com

Remember the ‘old skool’ stuff

● CORS/Same-Origin-P
olicy

● CSRF
● SSRF
● SQL Injection

https://42crunch.com/defending-ap
is-with-jim-manico-episode-1/

https://nostarch.com/tangledweb

https://nostarch.com/hacking-apis
https://42crunch.com/defending-apis-with-jim-manico-episode-1/
https://42crunch.com/defending-apis-with-jim-manico-episode-1/
https://nostarch.com/tangledweb

52 │ 42Crunch.com

Semgrep FTW

https://semgrep.dev/

Search for:
• Hardcoded secrets
• Missing AuthN/AuthZ

decorators
• JWT validation errors
• Missing method decorators
• Transport misconfiguration

https://semgrep.dev/

53 │ 42Crunch.com

Be wary of your Object Relational Mapper

● ORMs are a massive development
convenience speeding up coding
effort

● ORMs are a leading cause of:
 Excessive data exposure
 Mass assignment

● Always understand what your ORM
is doing for you, and decouple from
direct API access

54 │ 42Crunch.com

42Crunch – shift-left, shield-right

55 │ 42Crunch.com

My API security predictions for 2023

● Greater developer awareness of API security

● Training courses

● Supply chain security for APIs

● Automated API security testing

● API threat hunting

56 │ 42Crunch.com

Learning more

https://apisecurity.io/

APISecurity.io “Defending APIs against Cyber
Attack” – Colin Domoney

https://amzn.to/3fHp8Mz

“Hacking APIs” – Corey Ball

https://nostarch.com/hacking-apis

https://apisecurity.io/
https://nostarch.com/hacking-apis
https://nostarch.com/hacking-apis

57 │ 42Crunch.com

API Security: A Blueprint for Success

eBook

• - Practical Guide on an API Security program.
• - Map your enterprise’s API security posture

 against 6 key domains.
• - Champion the case for API Security.

Download here: https://42crunch.com/ebook-api-security-blueprint/

APIsecurity.io Community Newsletter: https://apisecurity.io/

https://42crunch.com/ebook-api-security-blueprint/
https://apisecurity.io/

58 │ 42Crunch.com

Further Activities

Upcoming News

 APISecurity.io Weekly Newsletter OpenAPI Editor – Free Download
 https://apisecurity.io/ https://42crunch.com/resources-free-tools

https://apisecurity.io/
https://42crunch.com/resources-free-tools/

