DEVELOPER

Feb15-17 SF Bay Area Feb 21-23 Virtual

€3 crunch

16 February 2023

Are Your APIls Rugged?

Colin Domoney
Chief Technology Evangelist

@colindomoney

42Crunch.com

© Copyright 2023 42Crunch



About the speaker

» VP of AppSec at Deutsche Bank
» 20k developers, 6k app

]

» Fixed over 3 million high severity flaws
 Built global AppSec program
* Innovation manager/DevRel/Solution
Architect at Veracode Inc.

» Frequent speaker and blogger

» Advised Fortune 100 on DevSecOps VERACODE
implementations

» Advisor to Product Management team
* Independent DevSecOps consultant

Colin Domoney * Industry analyst and advisor
Chief Technology Evangelist

DevSecOps specialist and evangelist,
lifelong learner/hacker and latent
developer

2 | 42Crunch.com

© Copyright 2023 42Crunch



a The need for rugged software

The Rugged Manifesto

| recognize that software has become a foundation of our modern world.
| recognize the awesome responsibility that comes with this foundational role.

| recognize that my code will be used in ways I cannot anticipate, in ways it was not designed,
and for longer than it was ever intended.

| recognize that my code will be attacked by talented and persistent adversaries who threaten
our physical, economic, and national security.
https://ruggedsoftware.org/

3 | 42Crunch.com

© Copyright 2023 42Crunch



a Beyond secure ... becoming rugged

Secure

« Using transport security
- Authenticate users via standard methods

« Authorize access to:
Functions
Objects

- Validate input data

- Use standard methods for token exchange
- Use API gateways

- Eliminate common coding vulnerabilities

“What you do to satisfy your regulators”

4 | 42Crunch.com

Rugged

Everything included by being secure !
Use standard libraries and components
Use defense-in-depth

Manage your API inventory

Manage access and abuse cases via:
Rate limiting
Quotas

Restrict access via risk factors:
Known bad IP addresses
Common attack methods

Attack your own APlIs

“What you do to delight your customers”

© Copyright 2023 42Crunch



1011010001010010101010110100010100101010101103000101001010
1000101001100010001010001010011000100010100010100710001000
1001101010000101001010011010100001030010100110101000010100
D1010100110100100000010101001107100100000070107001101001000!
10100010100100100100101000107001007100100107000101009001000
D1100100100101010101031001001001010101010110020010000701001
1001110101010000100010011101010100001000100111010101000010/
Dl001001010001001010010010010100010010‘00‘00}031010‘010010
D1010000101001000010010100001010070000100101 01010010000
1011010001010010101010410100 \10P,*010107017030007100001010
1000101001100070001070P"1010 00 \001Q100010100110001000
1001101010000101007010 010 00 0010100110101000010100
D10101001101001000000% 100 10 J000M010107100110%001000
1010001010010010010010! M0 0 101 010001010030010011
D1100100100101010101017) 0a 1: 01 M110010010010101011
10011101010100001000100 \} | J1¢  100111010101000010
D1001001010001009010010)\ ¥ N A10010010100010010
01010000101001000010030) | | - 3F MI10100001010010000

101101000101001010101011. > 0101101000101001010
1000101001100010001010001 (8100010100110001000
1001101010000107001010011 107100110101000010100
D1010100110100190” 001010 30010101001101001000
101000101001001( a0r 001010001010010010011
DllOOlOOlO.lOlOtb 0 010110010010010101011
1001110101010000100. 00100111010101000010
D10010010100010010100, 10010010010100010010
D101000010100100001001. 10010100001010010000
1071107100010100101010101)» 101011010001071001010
100010100717100010001010001 0. '0100010100110001000
10031010100001010010100110102 0100110101000010100
01010100110100100000010101001", ‘010101001101001000
1010001071001001001001010001010 1010001010010010071
D110010010010101010101100100104 110010010010101011

1001110101010000100010011101010 '‘0111010101000010

5 | 42Crunch.com

The need for API security

© Copyright 2023 42Crunch



From the monolith to microservices

Monolithic Architecture Microservices Architecture

A Data
Business
Access
Logic
Layer

Microservice Microservice

006006

Microservice Microservice Microservice Microservice

© Copyright 2023 42Crunch

6 | 42Crunch.com



o It’s all about the supply chain




@ Growing Number and Scale of Attacks

700 users’ personal data stolen Linked m

million

users’ personal data stolen Equ’FAx

APIs ARE BECOMING THE 147

MAIN ATTACK SURFACE million
100 users’ personal data at risk Jus‘l’dla|
million+

million

users’ phone numbers and addresses stolen -

mllhon

riders and drivers accounts were compromised Uber
mi lhon
users’ personal information was exposed facebook

users’ emails and phone numbers exposed

mllhon

MORE APIs
mllllon

subscribers phone numbers and PINs exposed verlzon\/
mi lhon
customers at risk of data exposure ' Paypa’

‘ 2017 June 2021

mllllon

8 | 42Crunch.com
© Copyright 2023 42Crunch



a The age of the APl mega-breach

OPTUS

200 million Twitter users' email addresses allegedly leaked online

Urgent update about
your personal information R0

T-Mobile hacked to steal data of 37 million accounts in API data
breach

Oear Former Optua Custormer

Oy Serghu Gottan :
B i ast Snappoinamant I'm wriing 10 et you now e Opnus Ras Deen & vaam of
B Cyoaraizach. As & Toemar Optus OUMDmWY TN 1as resuied In T dacioses of some of
YOur garonad iInformaton

portanty, 00 Wanchel DAITRAtON OF PaEWOrSs have Deen acossead The Information
whch han Deent engosed b por Aarse. dale of DY el phore murber. aidveas
S0ONied wih your ket 0o, e T rurtens of e K0 Gotumeiy you seowded
SN a8 Sy Roance rumber OF PASIOONT Aumber. N0 copees of 900 D8 Rave Leen

Wctes ‘ A .,

ry, A/ » -. 1
https://www.optus.com.au/about/media- . -l' : 'A\IOblle' .
centre/media-releases/2022/09/optus- X A
notifies-customers-of-cyberattack ' g SRRPK Al peameind w8 Dobd

SN ]

https://www.bleepingcomputer.com/news/security/200-
million-twitter-users-email-addresses-allegedly-leaked-
online/

https://www.bleepingcomputer.com/news/security/t-
mobile-hacked-to-steal-data-of-37-million-accounts-in-api-
data-breach/

9 | 42Crunch.com

© Copyright 2023 42Crunch


https://www.optus.com.au/about/media-centre/media-releases/2022/09/optus-notifies-customers-of-cyberattack
https://www.optus.com.au/about/media-centre/media-releases/2022/09/optus-notifies-customers-of-cyberattack
https://www.bleepingcomputer.com/news/security/t-mobile-hacked-to-steal-data-of-37-million-accounts-in-api-data-breach/
https://www.bleepingcomputer.com/news/security/t-mobile-hacked-to-steal-data-of-37-million-accounts-in-api-data-breach/
https://www.bleepingcomputer.com/news/security/t-mobile-hacked-to-steal-data-of-37-million-accounts-in-api-data-breach/
https://www.bleepingcomputer.com/news/security/200-million-twitter-users-email-addresses-allegedly-leaked-online/
https://www.bleepingcomputer.com/news/security/200-million-twitter-users-email-addresses-allegedly-leaked-online/
https://www.bleepingcomputer.com/news/security/200-million-twitter-users-email-addresses-allegedly-leaked-online/

Qo

10 | 42Crunch.com

Every week brings a new story

API Security Newsletter Archive

26 January, 23

Issue 213 Supply chain vulnerability in IBM Cloud, hardcoded APl keys in

15 January, 23
Issue 212: Remote control of vehieles: API hacking for QA teams, API Top
10 walkthrough

9 December, 22
Issue 211 SQU vulnerabllity in Zendesk Explore, Twitter API vulnerability,

API| threats to data-driven enterprises

30 November, 22

Issue 210: CSREVUlnerability In FS, sUpply chain attacks, hacking APIs,

GCP API security report

17 November, 22

Issue 209: (CSREIN PIeSKAPIEEnabIed SefieR top five AP security myths,

Ory Hydra authentication server

9 November, 22 _
Issue 208" Urlscan.io leaks sensitive data, Dropbox phishing attack,

contract test for microservices

https://apisecurity.io/

© Copyright 2023 42Crunch


https://apisecurity.io/

@ The root cause of API vulnerabilities ...

Human error is the root
cause of API vulnerabilities !

Logic errors

Poor design

Coding errors

Misuse of components/libraries
Misconfiguration of servers
Shortcuts

Assumptions

Insecure defaults
Misunderstanding attack vectors
Vulnerable dependencies

11 | 42Crunch.com
© Copyright 2023 42Crunch




Why does insecure
software exist?

12 | 42Crunch.com

© Copyright 2023 42Crunch



a3 Fail #1: Over optimism

Happy path. In the context of software or information modeling, a happy path is a
default scenario featuring no exceptional or error conditions. ... Happy path testing is
a well-defined test case using known input, which executes without exception and
produces an expected output.

Happy path - Wikipedia
https://en.wikipedia.org/wiki/Happy_path

@ About this result B Feedback

13 | 42Crunch.com
© Copyright 2023 42Crunch



@ Fail #2: Over confidence

The Dunning-Kruger Effect

g

Peak of "Mt. Stupid”

5

Slope of Enlightenment

Confidence

’

Valley of Despair

None Average Expert
Wisdom

(Knowledge + Experience)
14 | 42Crunch.com
© Copyright 2023 42Crunch



Qo Fail #3: Bad things happen to others

CAUTION

SCHADENFREUDE

cccccccccccccc
© Copyright 2023 42Crunch



a Fail #4: Taking a shortcut

<?php

class MyClass {
public function getDatal()

{
// TODO implement method

// Move the method to another class

cccccccccccccc
© Copyright 2023 42Crunch



Qo

17 | 42Crunch.com

Fail #5: This stuff is difficult !

Occurrences of words in the Linux kernel source code over time

© Copyright 2023 42Crunch



b Why API security is hard ?

18 | 42Crunch.com

© Copyright 2023 42Crunch



Qo API security is different to web security

OWASP API Security Top 10 OWASP Top 10

API11:2019 Broken Object Level Authorization A01:2021-Broken Access Control

API2:2019 Broken User Authentication A02:2021-Cryptographic Failures

API3:2019 Excessive Data Exposure A03:2021-Injection

AP14:2019 Lack of Resources & Rate Limiting A04:2021-Insecure Design

API15:2019 Broken Function Level Authorization A05:2021-Security Misconfiguration

AP16:2019 Mass Assignment A06:2021-Vulnerable and Outdated Components
AP17:2019 Security Misconfiguration A07:2021-ldentification and Authentication Failures
API8:2019 Injection A08:2021-Software and Data Integrity Failures
AP19:2019 Improper Assets Management AQ09:2021-Security Logging and Monitoring Failures
API10:2019 Insufficient Logging & Monitoring A10:2021-Server-Side Request Forgery

19 | 42Crunch.com
© Copyright 2023 42Crunch



@ APls are an easy target to attack

. — :
[ ——— TR
. They are easily discoverable —
—
. They are well documented .
-y
o e
. Attacks can be easily e
KR o -
automated =
. Excellent tools exist to o o
920% 290% 2022
automated attacks gl ooy g ey ey
are APls web applications attack vector"”
Gartner verizon’ Gartner

https://outpost24.com/blog/what-is-api-security-and-how-to-protect-them

20 | 42Crunch.com
© Copyright 2023 42Crunch


https://outpost24.com/blog/what-is-api-security-and-how-to-protect-them

o Your existing tools probably don’t work well for APIs

THENEWSTACK PFodcasts Events Ebooks « Newsietter Sponsorship

Architecture » Development » Operations v

SAST — wasn’t designed for API-centric
applications. Complex data flow paths or
unsupported frameworks reduce the
accuracy of a SAST analysis since the
model may be incomplete or inaccurate.

Application Security Tools Are Not
up to the Job of API Security

DAST — lacks context of APIs. DAST tools

can’t provide an intelligent assessment
of API security.

SCA - useful but not sufficient

IAST - complex to install and use

https://thenewstack.io/application-security-tools-are-not-up-to-the-job-of-api-security/

21 | 42Crunch.com
© Copyright 2023 42Crunch


https://thenewstack.io/application-security-tools-are-not-up-to-the-job-of-api-security/

o Your security architectures are built to protect this ...

22 | 42Crunch.com

© Copyright 2023 42Crunch



o With APIs, security measures need to protect this!

23 | 42Crunch.com

© Copyright 2023 42Crunch



a Where does API security fit?

Data flaws, BOLA, BFLA Coding flaws, vulnerable libraries
Rate limiting, AuthN BOLA, BFLA, data flaws, # | OWASP API Top 10 Vulnerabilities
injection, rate limiting
1 Broken Object Level Authorization

_________________________________________________________________________________________ 2 Broken User Authentication
3 Excessive Data Exposure
; API API >
I . . 4_): . g
. Gateway/Management RISk Nz l10e allnte = 4 | back of Resources & Rate Limiting
| 8. S Broken Function Level Authorization
| ()
ol 6 Mass Assignment
| SAST/DAST/SCA WAF <
i i 7 Security Misconfiguration

Injection

—

Improper Assets Management
AuthZ, AuthN, data flaws Most API vulnerabilities

Injection, coding flaws, Injection
vulnerable libraries

10 Insufficient Logging & Monitoring

24 | 42Crunch.com
© Copyright 2023 42Crunch



The unique opportunities
for APl security

25 | 42Crunch.com

© Copyright 2023 42Crunch



a OpenAPI Specification at the heart

Flov Efte lmerte  Ceoonie Sorver v Genorsls Clert «
OAS forms a definitive contract for all
downstream development

OAS allows for a precise definition of
request and response data types

OAS allows operations to be tightly
specified

OAS allows security primitives to be
specified

Extensions allow for additional primitives
to be included

Swagger Petstore @<

L

Servens
[ mp-spetsiors.swaggecions « |

_: /pets Lt sl pots

s Craam a pt

‘::q.-;-“’ fpota/(potId} wio kA spechc pet

Models v

26 | 42Crunch.com
© Copyright 2023 42Crunch



o Use OAS as the core of a ‘shift left’ process

42Crunch

Security Audit Code generation

API back- o 42Crunch
(o) Conformance
end code S s Scan

Code introspection

27 | 42Crunch.com

© Copyright 2023 42Crunch



a The benefits of a positive security model

Allowlist VS.

Allowed data types strong defined and
enforce in OAS mode

Data format can be precisely defined
Operations can be fully specified too

Only allow data conforming to
specification — anything else is an
error

Only allows “known good”

28 | 42Crunch.com

Blocklist

Attempts to interpret data based on the
runtime context i.e., Javascript, HTML

Attempt to block what shouldn’t be
present in a given context

Can easily be subverted with encoding,
etc.

Attempts to block “known bad”

© Copyright 2023 42Crunch



a Building guardrails - trust, but verify

- Provide the security tooling and solutions
- Provide the guidance on usage

- Set the policies and standards

- Implement governance

- Give the developers the freedom to
implement their solutions

29 | 42Crunch.com

© Copyright 2023 42Crunch



Getting rugged with your APIs

30 | 42Crunch.com

© Copyright 2023 42Crunch




a Rugged by design

‘ thaddeus e. grugq

Your threat model is not my threat model,

Threat model your APIs
. Think like an attacker
Understand your data

« Privacy

« Revocation
« Understand your environments
« Secret storage
« Device integrity

703 Retweets 13K LA

31 | 42Crunch.com
© Copyright 2023 42Crunch



a Rugged by implementation

Use standard protocols
Use standard libraries/components
« AuthN
« AuthZ
. Crypto
Validate all data
Understand your framework/middleware
« Disable unused paths/methods
« Beware of defaults

n©de-
EXPress

32 | 42Crunch.com
© Copyright 2023 42Crunch



Verify by inspection

/api/user/info:
get:
x=42c~-local-strategy:
Xx=-42c-strategy:
protections:
- X=42c-jwt-validation 0.1:

header.name: x-access-token
jwk.envvar: JWK PUBLIC RSA KEY
authorized.algorithms: [RS256, RS384)

Source code :
Production

repository

33 | 42Crunch.com
© Copyright 2023 42Crunch



a3 Rugged at runtime

« Use your API gateway
. Rate limiting
« Token validation
» Integrate with SIEM/SOC
« Threat detection
« Bot detection Azure Sentinel
. Use Cloud protections
o DDOS
o Firewalls

apigee WS@;

34 | 42Crunch.com
© Copyright 2023 42Crunch



a3 Input data validation

- No Trust (even for internal APIs and for East-West traffic
- Validation can happen client side, but it must happen server-side!

- Do not blindly update data from input structure
Apply caution when using frameworks that map directly database records to JSON objects

. Do not use the same data structures for GET and POST/PUT
- Validate Inputs

Only accept information specified in JSON schema (contract-based, allowlist approach)

Reject all others.
Also validate Headers

. How to test

Send bad verbs, bad data, bad formats, out of bounds, etc.

35 | 42Crunch.com
© Copyright 2023 42Crunch



a Output data validation

Never rely on client apps to filter data; instead, create various APIs
depending on consumer, with just the data they need

Take control of your JSON schemas !
Describe the data thoroughly and enforce the format at runtime

Review and approve data returned by APlIs

Never expose tokens/sensitive/exploitable data in APl responses
Properly design error messages - make sure they are not too verbose!
Beware of GraphQL queries!

Validate fields accessed via query

36 | 42Crunch.com
© Copyright 2023 42Crunch



Continuous protection - integration with Azure Sentinel

“«
o Errored AP Access
St ot 24 by Bl oceiom
£o e AL B O -y
= IK A3 U104 2% 49 ~omte & Unassigned Vv New v Mednm W
[P, . o aanan | S Taram | et (Vv Prties ot ¥ oo Poeee ) Omret L Severity

Lverts and slerts owet e Alert product names

Excert ccderts ¢ Apure Sentnel
o —ny -
I 504
~r e AN e o [ waerce
. eriee ~> e AN AL A -1 o 1 Ho
205 -r pown AN S8 e fvents Alerts Bochmarkt
' - - [
| ——an.

A / II ’ Last ypdate teve Creation Lime
f\ 'K 11/11/21, 0507 PM 11/11/21, 0507 P
\ \ amnan

| | | 0
Tactcs (3
| vt O PreAsuack
/\ | \ A | 4 l
[\ | \ '\ | | 69 B ienal Accens

‘ I = MW1s8610
,“ ". ;' II ,r" ’| | e ) — o ¥ Dascovery
A fi Y N | \ :

\
/{ '.' \ ,' lL ) . J \___‘l \ NOSe~1 wortbock
/ \ 4 \ /““-4’ \_"-\ ,.-/ I\ node~t Overvaew
\ o S ~ f
o3 - et/ f
—’—_ — - — . . - - - - . - Ead - - - - Kl = . ELS N \ - -

Anshyncs rde
T -
TR Errored AP Accen
P&l W R wverty

Tagn

= : 5
0 [

AL Y
/053 . . . -~ et | nk
0 A Binaoniiie ik Rrsans Suang Mrps//poctal arure comMPrnsetyVicroseM_Arure_Secusty Inughty/ . 0
————
b..:-.. « Maid P gm0 W e STy st @ By @ eee gy

‘ i V'""'IA";T :-.:-'u.v:-:::, NI T a LALt comvment Total &

Write » commant

37 | 42Crunch.com
© Copyright 2023 42Crunch



Our approach to API security

© Copyright 2023 42Crunch



% The six pillars of APl security

TESTING

2
{/> DEVELOPMENT

39 | 42Crunch.com

—~ 0
F\;\J) PROTECTION

. GOVERNANCE

API INVENTORY

Do you understand what APIs you
own? Do you track shadow and
zombie APIs?

AP| DESIGN

Are you doing API-design-first?
Do you incorporate security
into the design phase?

AP| DEVELOPMENT

Are your developers trained to
code securely? Do they understand
API security threats and risks?

AP|I TESTING

Are you doing automated API
testing? Are you considering
security in your test strategy?

AP| PROTECTION

Are you using API protection
technology (WAFs, WAAPs, AP
gateways) in your deployments?

API GOVERNANCE

Do you control and actively
monitor your API estate and
environments?

© Copyright 2023 42Crunch



@  shift-Left, Shield-Right

SHIFT-LEFT
WITH SECURITY AS CODE

01 02
«=  Design - — Develop == = ==

1

03
Integrate & Test

Codg in Document
security at & audit API
design time contract

APl vulnerability
scanning in
CI/CD pipeline

40 | 42Crunch.com

SHIELD-RIGHT
RUNTIME PROTECTION

04
Deploy & Protect -

Security policy
enforced
at runtime

© Copyright 2023 42Crunch



The developer first APl security platform

SECURITY MANAGEMENT & GOVERNANCE

Visibility & control of security policy enforcement throughout API lifecycle for security teams.

%@_

APl AUDIT

Lock down your API’s definitions
to reduce the attack surface and remove
potential security gaps.

r al

©

API SCAN

Dynamic runtime testing of your API
to ensure compliance with
API Contracts.

@

API PROTECT

Protect each API with an API

micro-firewall to distinguish legitimate
traffic from malicious API attacks.

INTEGRATED ACROSS API LIFECYCLE

Continuous security enforcement across IDE, CI/CD and at runtime.

BENEFITS:

AUTOMATION

- COMPLIANCE -  COST SAVINGS

TIME TO MARKET

41 | 42Crunch.com

© Copyright 2023 42Crunch



@ Leverage power of the ecosystem

Complete and continuous protection for APIs throughout the SDLC.
Secure by design and at runtime.

SHIFT LEFT
with 42Crunch AUDIT & SCAN
(Design & Develop)

SHIELD RIGHT
with 42Crunch FIREWALL

(Deployment Runtime)

sonarqube \ O {; u apigee /A @ 0'., splunk >
O DOk DO

IDE Cl/CD APl MANAGEMENT CLOUD PLATFORM MONITORING SIEM

(» ‘ wse, ‘ 8

42 | 42Crunch.com
© Copyright 2023 42Crunch



@ Learning more

“Defending APIs against Cyber

APISecurity.io “Hacking APIs” - Corey Ball Attack” - Colin Domoney

HACKING APIs . WO Wt
5 ’Q;

BREAKING WED APPLICATION
PROGANAMMING INTERTFACEKES

y

WAV eniviee)

Defending APIs
against Cyber Attack

COLIN DOMONEY

https://apisecurity.io/

https://nostarch.com/hacking-apis https://amzn.to/3fHp8Mz

43 | 42Crunch.com
© Copyright 2023 42Crunch


https://apisecurity.io/

Qo

eBook

API Security: A Blueprint for Success

3] APIINVENTORY

B PR o
API AN API - Practical Guide on an AP/ Security program.
GOVERNANCE 7 T RSN 0 N N\ DESIGN . » .
7 - NN\ - Map your enterprise’s APl security posture
I 1 ] against 6 key domains.
API SECURITY ﬁw; : | - Champion the case for APl Security.
® ABlueprint e ) | [
for Success S
W | A N : L LD
AP NN N, i
PROTECTION E : " ~ DEVELOPMENT
L API

Download here: hitps://42crunch.com/ebook-api-security-blueprint/

APlsecurity.io Community Newsletter: https://apisecurity.io/

44 | 42Crunch.com
© Copyright 2023 42Crunch


https://42crunch.com/ebook-api-security-blueprint/
https://apisecurity.io/

OWASP API Security Top 10

45 | 42Crunch.com
© Copyright 2023 42Crunch




Qo

46 | 42Crunch.com

How does an APl work?

Request: e e o

POST /user/{id}

AuthN AuthZ

(Authentication) (Authorization)

username: colin;
isAdmin: true;

username: colin;
password: password123;

6/

APl backend H . e

© Copyright 2023 42Crunch



& API1 — BROKEN OBJECT LEVEL AUTHORIZATION

Request:

POST /user /{id}
{ A
odine: Soll: uthN AuthZ

:;S:d:wz:rr:etruz;n (Authentication) = (Authorization) O
} 3
APl backend \—/
A
Response: , TR

username: colin;
password: password123;

https://apisecurity.io/ encyclopedia/content/owasp/api1-broken-object-level-authorization

47 | 42Crunch.com
© Copyright 2023 42Crunch


https://apisecurity.io/encyclopedia/content/owasp/api1-broken-object-level-authorization

& APl 2: BROKEN AUTHENTICATION

Request:

POST /user/{id}
{

username: colin;
isAdmin: true;

}

AuthN AuthZ O

(Authentication) (Authorization)
API backend H\—/

Response:

{

username: colin;
password: password123;

}

https://apisecurity.io/ encyclopedia/content/owasp/api2-broken-authentication
48 | 42Crunch.com
© Copyright 2023 42Crunch



https://apisecurity.io/encyclopedia/content/owasp/api2-broken-authentication

& APl 3: DATA/EXCEPTION LEAKAGE

Request:
POST /user/{id}

: A
- uthN AuthZ
ffé&?::euﬁ;m (Authentication) = (Authorization) O
} 3
APl backend \—/
M !
TR

Response:

’ username: colin;

password: password123;
}

https://apisecurity.io/ encyclopedia/content/owasp/api3-excessive-data-exposure
© Copyright 2023 42Crunch

49 | 42Crunch.com


https://apisecurity.io/encyclopedia/content/owasp/api3-excessive-data-exposure

& APl 4: RESOURCES PROTECTION/RATE LIMITING

Request:

POST /user/{id}

{ A
- uthN AuthZ
ffé&?::euﬁ;m (Authentication) = (Authorization) O
} 3
APl backend \—/
A
Response: s 9

{

username: colin;
password: password123;

}

https://apisecurity.io/ encyclopedia/content/owasp/api4-lack-of-resources-and-rate-limiting

50 | 42Crunch.com
© Copyright 2023 42Crunch


https://apisecurity.io/encyclopedia/content/owasp/api4-lack-of-resources-and-rate-limiting

& APl 5: BROKEN FUNCTION LEVEL AUTH

Request:

POST /user/{id}
{

username: colin;
isAdmin: true;

}

AuthN AuthZ O

(Authentication) (Authorization)
API backend H\—/

Response:

username: colin;
password: password123;

https://apisecurity.io/ encyclopedia/content/owasp/api5-broken-function-level-authorization
51 | 42Crunch.com
© Copyright 2023 42Crunch



https://apisecurity.io/encyclopedia/content/owasp/api5-broken-function-level-authorization

@ APl 6: MASS ASSIGNMENT

Request:
POST /user/{id} )
{

- AuthN AuthZ
: colin;
ffé&?::euﬁ;m (Authentication) = (Authorization) O
} L
APl backend \—/
M !
Response: s 9

{

username: colin;
password: password123;

}

https://apisecurity.io/ encyclopedia/content/owasp/api6-mass-assignment

52 | 42Crunch.com
© Copyright 2023 42Crunch


https://apisecurity.io/encyclopedia/content/owasp/api6-mass-assignment

& APl 7: SECURITY MISCONFIGURATION

Request:
POST /user/{id}

‘ A
- uthN AuthZ
ffé&?::euﬁ;m (Authentication) = (Authorization) O
} 3
/ API backend [P
A
\ Response: s 9
{

username: colin;
password: password123;

}

https://apisecurity.io/ encyclopedia/content/owasp/api7-security-misconfiguration

53 | 42Crunch.com
© Copyright 2023 42Crunch


https://apisecurity.io/encyclopedia/content/owasp/api7-security-misconfiguration

@  API8: INJECTION

Request:

POST /user/{id} )
{
ername: colin; AuthN AuthZ c
(Authentication) = (Authorization)
} °
API backend [
R S
Response: s
{

username: colin;
password: password123;

}

https://apisecurity.io/ encyclopedia/content/owasp/api8-injection

54 | 42Crunch.com
© Copyright 2023 42Crunch


https://apisecurity.io/encyclopedia/content/owasp/api8-injection

& APl 9: IMPROPER ASSETS MANAGEMENT

Request:
POST /user/{id}

‘ A
- uthN AuthZ
ffé&?::euﬁ;m (Authentication) = (Authorization) O
} 3
/ API backend [P
A
\ Response: s 9
{

username: colin;
password: password123;

}

https://apisecurity.io/ encyclopedia/content/owasp/api9-improper-assets-management

55 | 42Crunch.com
© Copyright 2023 42Crunch


https://apisecurity.io/encyclopedia/content/owasp/api9-improper-assets-management

@ APl 10: LOGGING /MONITORING

Request:

POST /user/{id}
{

username: colin;
isAdmin: true;

}

AuthN AuthZ O

(Authentication) (Authorization)
API backend H\—/

Response:

{

username: colin;
password: password123;

}

https://apisecurity.io/ encyclopedia/content/owasp/api10-insufficient-logeing-and-monitoring
56 | 42Crunch.com
© Copyright 2023 42Crunch



https://apisecurity.io/encyclopedia/content/owasp/api10-insufficient-logging-and-monitoring

