
42Crunch.com

Everything You Need to Know About API Security

17 February 2023

Colin Domoney

Chief Technology Evangelist

@colindomoney

© Copyright 2023 42Crunch

2 │ 42Crunch.com

About the speaker

Colin Domoney
Chief Technology Evangelist

DevSecOps specialist and evangelist,
lifelong learner/hacker and latent
developer

• VP of AppSec at Deutsche Bank
• 20k developers, 6k app

• Fixed over 3 million high severity flaws
• Built global AppSec program

• Innovation manager/DevRel/Solution
Architect at Veracode Inc.

• Frequent speaker and blogger
• Advised Fortune 100 on DevSecOps

implementations
• Advisor to Product Management team

• Independent DevSecOps consultant
• Industry analyst and advisor

© Copyright 2023 42Crunch

3 │ 42Crunch.com

The need for API security

© Copyright 2023 42Crunch

4 │ 42Crunch.com

From the monolith to microservices

© Copyright 2023 42Crunch

5 │ 42Crunch.com

It’s all about the supply chain

© Copyright 2023 42Crunch

6 │ 42Crunch.com

APIs ARE BECOMING THE
MAIN ATTACK SURFACE

MORE APIs
MORE RISK

700
million

users’ personal data stolen

147
million

users’ personal data stolen

100
million+

users’ personal data at risk

100
million

customer records accessed

76
million

users’ phone numbers and addresses stolen

57
million

riders and drivers accounts were compromised

49
million

users’ emails and phone numbers exposed

50
million

users’ personal information was exposed

1.6
million

customers at risk of data exposure

14
million

subscribers phone numbers and PINs exposed

2017 June 2021

6 │ 42Crunch.com

Growing Number and Scale of Attacks

© Copyright 2023 42Crunch

7 │ 42Crunch.com

The age of the API mega-breach

https://www.optus.com.au/about/media-
centre/media-releases/2022/09/optus-
notifies-customers-of-cyberattack

https://www.bleepingcomputer.com/news/security/t-
mobile-hacked-to-steal-data-of-37-million-accounts-in-api-
data-breach/

https://www.bleepingcomputer.com/news/security/200-
million-twitter-users-email-addresses-allegedly-leaked-
online/

© Copyright 2023 42Crunch

https://www.optus.com.au/about/media-centre/media-releases/2022/09/optus-notifies-customers-of-cyberattack
https://www.optus.com.au/about/media-centre/media-releases/2022/09/optus-notifies-customers-of-cyberattack
https://www.bleepingcomputer.com/news/security/t-mobile-hacked-to-steal-data-of-37-million-accounts-in-api-data-breach/
https://www.bleepingcomputer.com/news/security/t-mobile-hacked-to-steal-data-of-37-million-accounts-in-api-data-breach/
https://www.bleepingcomputer.com/news/security/t-mobile-hacked-to-steal-data-of-37-million-accounts-in-api-data-breach/
https://www.bleepingcomputer.com/news/security/200-million-twitter-users-email-addresses-allegedly-leaked-online/
https://www.bleepingcomputer.com/news/security/200-million-twitter-users-email-addresses-allegedly-leaked-online/
https://www.bleepingcomputer.com/news/security/200-million-twitter-users-email-addresses-allegedly-leaked-online/

8 │ 42Crunch.com

Every week brings a new story

https://apisecurity.io/

© Copyright 2023 42Crunch

https://apisecurity.io/

9 │ 42Crunch.com

The root cause of API vulnerabilities …

● Logic errors
● Poor design
● Coding errors
● Misuse of components/libraries
● Misconfiguration of servers
● Shortcuts
● Assumptions
● Insecure defaults
● Misunderstanding attack vectors
● Vulnerable dependencies

Human error is the root
cause of API vulnerabilities !

© Copyright 2023 42Crunch

10 │ 42Crunch.com

The six pillars of API security

© Copyright 2023 42Crunch

11 │ 42Crunch.com

OWASP API Security Top 10

© Copyright 2023 42Crunch

12 │ 42Crunch.com

How does an API work?

API backend

AuthZ
(Authorization)

AuthN
(Authentication)

Request:
POST /user/{id}
{

username: colin;
isAdmin: true;

}

Response:

{
username: colin;
password: password123;

}

1
2 3 4

5

6

7

© Copyright 2023 42Crunch

13 │ 42Crunch.com

API1 — BROKEN OBJECT LEVEL AUTHORIZATION

https://apisecurity.io/encyclopedia/content/owasp/api1-broken-object-level-authorization

© Copyright 2023 42Crunch

https://apisecurity.io/encyclopedia/content/owasp/api1-broken-object-level-authorization

14 │ 42Crunch.com

API 2: BROKEN AUTHENTICATION

https://apisecurity.io/encyclopedia/content/owasp/api2-broken-authentication

© Copyright 2023 42Crunch

https://apisecurity.io/encyclopedia/content/owasp/api2-broken-authentication

15 │ 42Crunch.com

API 3: DATA/EXCEPTION LEAKAGE

https://apisecurity.io/encyclopedia/content/owasp/api3-excessive-data-exposure

© Copyright 2023 42Crunch

https://apisecurity.io/encyclopedia/content/owasp/api3-excessive-data-exposure

16 │ 42Crunch.com

API 4: RESOURCES PROTECTION/RATE LIMITING

https://apisecurity.io/encyclopedia/content/owasp/api4-lack-of-resources-and-rate-limiting

© Copyright 2023 42Crunch

https://apisecurity.io/encyclopedia/content/owasp/api4-lack-of-resources-and-rate-limiting

17 │ 42Crunch.com

API 5: BROKEN FUNCTION LEVEL AUTH

https://apisecurity.io/encyclopedia/content/owasp/api5-broken-function-level-authorization

© Copyright 2023 42Crunch

https://apisecurity.io/encyclopedia/content/owasp/api5-broken-function-level-authorization

18 │ 42Crunch.com

API 6: MASS ASSIGNMENT

https://apisecurity.io/encyclopedia/content/owasp/api6-mass-assignment

© Copyright 2023 42Crunch

https://apisecurity.io/encyclopedia/content/owasp/api6-mass-assignment

19 │ 42Crunch.com

API 7: SECURITY MISCONFIGURATION

https://apisecurity.io/encyclopedia/content/owasp/api7-security-misconfiguration

© Copyright 2023 42Crunch

https://apisecurity.io/encyclopedia/content/owasp/api7-security-misconfiguration

20 │ 42Crunch.com

API 8: INJECTION

https://apisecurity.io/encyclopedia/content/owasp/api8-injection

© Copyright 2023 42Crunch

https://apisecurity.io/encyclopedia/content/owasp/api8-injection

21 │ 42Crunch.com

API 9: IMPROPER ASSETS MANAGEMENT

https://apisecurity.io/encyclopedia/content/owasp/api9-improper-assets-management

© Copyright 2023 42Crunch

https://apisecurity.io/encyclopedia/content/owasp/api9-improper-assets-management

22 │ 42Crunch.com

API 10: LOGGING /MONITORING

https://apisecurity.io/encyclopedia/content/owasp/api10-insufficient-logging-and-monitoring

© Copyright 2023 42Crunch

https://apisecurity.io/encyclopedia/content/owasp/api10-insufficient-logging-and-monitoring

23 │ 42Crunch.com

Vulnerabilities in
review
Recap of our favorite
vulnerabilities in 2022

© Copyright 2023 42Crunch

24 │ 42Crunch.com

#1: Global shipping company

What happened?
Researchers discovered they could automatically submit parcel numbers to an API that retrieved a map image. They then
used this image to guess the postcode and then were able to retrieve full parcel information and extended user
information.

Impact:
Potentially large-scale exfiltration of customer PII and parcel tracking information. Researchers reported responsibly and
a fix was released before exploitation.

Cause:
• Lack of rate-limiting
• Excessive information exposure

Lessons learned:
• Protect APIs from brute-force attacks.
• Only return the minimum information necessary.

© Copyright 2023 42Crunch

25 │ 42Crunch.com

#1: Global shipping company

© Copyright 2023 42Crunch

26 │ 42Crunch.com

#1: Global shipping company – how to prevent it

Design:

• Failure to under PII requirements – leaked customer details
• Failed to understand abuse case – brute forcing of tracking codes
• Relied on obscurity – map image could be reverse engineered

Testing:

• Did not detect leakage of customer information

Protection:

• Lack of rate limiting on critical API allowing brute forcing

© Copyright 2023 42Crunch

27 │ 42Crunch.com

#2: Campus access control

What happened?
A campus access control application used a backend API that did not authenticate users allowing an attacker to
impersonate any user given their guessable IDs. By faking the user location an attacker could access all doors on campus.

Impact:
Unknown, but probably limited.

Cause:
• Broken function-level authorization
• Broken authentication

Lessons learned:
• Ensure all functions are fully authenticated.
• Make sure you can revoke any sessions keys or tokens.

© Copyright 2023 42Crunch

28 │ 42Crunch.com

#2: Campus access control – how to prevent it

Design:

• Allowed user to fake location details
• Relied on public domain user IDs which could be guessed

Testing:

• Did not detect broken authentication – easy to detect!

Governance:

• No security process in place to handle security disclosure

Development:

• Failed to prevent BOLA – use better authorization

© Copyright 2023 42Crunch

29 │ 42Crunch.com

#3: Microbrewery application

What happened?
Mobile application for microbrewery used hardcoded tokens within application binary which could easily be extracted
allowing for manipulation of backend functions including other users PII, and access to discount schemes, etc.

Impact:
Free beer !! Disclosure of user’s PII.

Cause:
• Hardcoded tokens in mobile application

Lessons learned:
• Use a standard mechanism (OAuth2) for the exchange and distribution of tokens.
• Make sure you are able to revoke any sessions keys or tokens.

© Copyright 2023 42Crunch

30 │ 42Crunch.com

#3: Microbrewery application

© Copyright 2023 42Crunch

31 │ 42Crunch.com

#3: Microbrewery application – how to prevent it

Design:

• No attempt to use standard authorization framework
• Failure to under PII requirements – leaked customer details

Testing:

• Hardcoded tokens can be detected trivially – did they even try?

Protection:

• No attempt to monitor abuse – did users actually abuse the vulnerability?

Governance:

• No security process in place to handle security disclosure
• Excessively long time to remediate

© Copyright 2023 42Crunch

32 │ 42Crunch.com

#4: Cryptocurrency portal

What happened?
A researcher discovered an issue in a cryptocurrency trading platform whereby he could trade between two different
accounts. The platforms failed to validate the account details and allowed purchases from accounts with insufficient
funds. The exploit could be triggered by manipulating API request parameters.

Impact:
Limited due to responsible disclosure and immediate response.

Cause:
• A text-book case of broken-object level authorization allowing manipulation via an API parameter.

Lessons learned:
• Broken object-level authorization is the number one API security issue — always ensure you fully validate access to

objects for all requests.
• Bug bounties can be profitable — this was worth $250,000.

© Copyright 2023 42Crunch

33 │ 42Crunch.com

#4: Cryptocurrency portal – how to prevent it

Development:

• Threat modelling could have identified attack vector
• Security training could have raised awareness of BOLA
• Code reviews could have identified issue

© Copyright 2023 42Crunch

34 │ 42Crunch.com

#5: Dating application

What happened?
A researcher discovered he could use trilateration techniques to determine the precise location of users. It was also
possible to access the PII information of connected users.

Impact:
Minimal although caused embarrassment for the application affected.

Cause:
• Another example of broken object-level authorization
• Excessive information exposure allowed inference of user location to a high level of precision.

• Security by obscurity

Lessons learned:
• Only disclose the minimum of information necessary via API calls as attackers may infer other useful user data.
• Never rely on client-side protections to protect your user data since this can easily be circumvented by using the API

directly.

© Copyright 2023 42Crunch

35 │ 42Crunch.com

#5: Dating application

© Copyright 2023 42Crunch

36 │ 42Crunch.com

#5: Dating application – how to prevent it

Design:

• Threat modelling would have revealed issues with geolocation usage

Testing:

• Excessive information disclosure can easily be tested

Protection:

• Excessive information disclosure can easily be prevented

“As one of the trailblazers of
location-based online dating, T****r

was inevitably also one of the
trailblazers of location-based

security vulnerabilities.”

Development:

• Reliance of client-side protections
• Failed to protect against BOLA

© Copyright 2023 42Crunch

37 │ 42Crunch.com

#6: All in One SEO WordPress plugin

What happened?
A popular WordPress plugin had a broken API endpoint which allowed any authenticated users to have full access
(effectively admin access) to affected sites.

Impact:
Full takeover of affected WordPress sites, immediate patch released.

Cause:
• Broken function-level authorization and poor default settings in API endpoint handler.

Lessons learned:
• Ensure that all functions and endpoints are fully authenticated and authorized.
• Defensive coding techniques should be used to prevent access in the case of failure.

© Copyright 2023 42Crunch

38 │ 42Crunch.com

#6: All in One SEO WordPress plugin – how to prevent it

Development:

• Poorly implemented authorization handler
- insecure default used
- case-sensitivity issues

• Lack of code review of critical code paths

© Copyright 2023 42Crunch

39 │ 42Crunch.com

#7: Twitter email/phone number mass leakage

What happened?
Hackers were able to abuse a Twitter API designed for mobile device login flows in order to confirm whether emails or
phone numbers were associated with a Twitter account.

Impact:
Very high volumes (estimated at 200 million) of verified Twitter accounts and their associated email and phone numbers
were available for sale on the black market. Such databases would aid spear-phishing attacks.

Cause:
• Abuse of a seemingly benign utility API call leaked Twitter IDs for valid accounts.
• Apparent lack of either rate-limiting or intrusion detection on the associated API.

Lessons learned:
• Always consider the abuse case via threat modelling.
• Use preventative controls to detect abuse of APIs.

© Copyright 2023 42Crunch

40 │ 42Crunch.com

#7: Twitter email/phone number mass leakage

https://hackerone.com/reports/1439026

https://thenewstack.io/twitter-leak-shows-how-
important-api-security-remains-in-2023/

https://venturebeat.com/security/twitter-social-engineering/

© Copyright 2023 42Crunch

https://hackerone.com/reports/1439026
https://thenewstack.io/twitter-leak-shows-how-important-api-security-remains-in-2023/
https://thenewstack.io/twitter-leak-shows-how-important-api-security-remains-in-2023/
https://venturebeat.com/security/twitter-social-engineering/

41 │ 42Crunch.com

#7: Twitter email/phone number mass leakage – how to prevent it

Design:

• Threat modelling would have identified this abuse case
• Twitter user IDs should not have been exposed

• Intrusion detection could have detected unusual activity on this API

Governance:

• Failure to control PII information

Development:

• Development testing could have identified the user ID exposure

Protection:

© Copyright 2023 42Crunch

42 │ 42Crunch.com

#8: Load balancer

What happened?
A load balancing and security suite were affected by a Remote Code Execution (RCE) vulnerability. The vulnerability is in
the REST API that allowed remote access to platform configuration. Attackers could gain access to an exposed command
shell endpoint that did not require any authentication.

Impact:
16,000 systems were exposed on the internet. No reported breaches occurred, and the issue has been patched.

Cause:
• Broken authentication

Lessons learned:
• Ensure all API endpoints are authenticated.
• Reduce attack surface by removing unnecessary management interfaces or lock down their public access.

© Copyright 2023 42Crunch

43 │ 42Crunch.com

#8: Load balancer – how to prevent it

Design:

• Insecure defaults – disable diagnostic service by default

Testing:
• No evidence of testing – unauthenticated endpoints are easy to discover

Governance:

• Strong governance would ensure issues like this are not released to
production

Development:

• Code review of critical code paths would detect issues like this

© Copyright 2023 42Crunch

44 │ 42Crunch.com

#9: Home router

What happened?
A popular home router was vulnerable to command injection vulnerability in an internal API. A security researcher
discovered an internal admin interface that the router UI used to execute arbitrary commands and was able to execute
arbitrary commands.

Impact:
No reported breaches were disclosed, and at the time of writing no patches were available.

Cause:
• Broken authentication
• Cross-site request forgery

Lessons learned:
• Ensure all API endpoints are authenticated.
• Reduce attack surface by removing unnecessary management interfaces.
• Protect internet facing access with well trusted protections (such as CSRF tokens)

© Copyright 2023 42Crunch

45 │ 42Crunch.com

#9: Home router

© Copyright 2023 42Crunch

46 │ 42Crunch.com

#9: Home router – how to prevent it

Design:

• Insecure defaults – disable debug interface by default

Testing:
• No evidence of testing – unauthenticated endpoints are easy to discover

Governance:

• Strong governance would ensure issues like this are not released to
production

Development:

• Code review of critical code paths would detect issues like this
• Security awareness training would prevent basic issues seen here

© Copyright 2023 42Crunch

47 │ 42Crunch.com

#10: Smart scale

What happened?
Researchers discovered that they could perform a variety of attacks on an API backend for a smart scale, including
gaining access to access and refresh tokens, and account takeover using a ‘password reset’ functionality.

Impact:
Vulnerabilities were remediated SEVEN months after disclosure.

Cause:
• Broken authentication
• Broken object-level authorization

• Excessive data exposure

Lessons learned:
• Multiple vulnerabilities can be effectively combined to achieve total compromise.
• In the event of a disclosure ensure you have a plan for remediation and mitigation.

© Copyright 2023 42Crunch

48 │ 42Crunch.com

#10: Smart scale

© Copyright 2023 42Crunch

49 │ 42Crunch.com

#10: Smart scale – how to prevent it

Design:

• Insecure defaults – disable debug interface by default
• Threat modelling would have identified issues – guessable IDs, and PINs

Testing:
• Excessive information disclosure (token leakage) can be easily detected
• Rate-limiting would prevent abuse of password reset function

Governance:

• No responsible disclosure program
• Very slow response to researcher

Development:

• No understanding of basic API security issues
• Security awareness training would prevent issues seen here

Protection:

• Excessive information disclosure can easily be prevented

© Copyright 2023 42Crunch

50 │ 42Crunch.com

#11: Automation platform

What happened?
Researchers discovered a vulnerability in the API endpoint that provide remote administration on an industrial
automation platform. This allowed remote code execution attacks. Additionally, a file transfer endpoint allowed for
overwrite of the local filesystem.

Impact:
Prompt disclosure and a hotfix prevented any compromised.

Cause:
• Broken authentication

Lessons learned:
• Ensure all API endpoints are authenticated.
• Reduce attack surface by removing unnecessary management interfaces.
• Use read-only filesystems for system images such as operating systems.

© Copyright 2023 42Crunch

51 │ 42Crunch.com

#11: Automation platform – how to prevent it

Testing:
• No evidence of testing – unauthenticated endpoints are easy to discover

Governance:

• Strong governance would ensure issues like this are not released to
production

Development:

• Code review of critical code paths would detect issues like this

© Copyright 2023 42Crunch

52 │ 42Crunch.com

#12: CI/CD platform

What happened?
Researchers discovered that they could access historical logs for a popular CI/CD platform by enumerating API endpoints.
The logs contained secret information including access tokens and credentials to 3rd party platforms such as GitHub and
AWS.

Impact:
Leakage of tens of thousand of access credentials to 3rd party platforms. Vendor claims this is “by design” !

Cause:
• Hidden API endpoints allowed enumeration of archived log files.
• Lack of rate-limiting.

Lessons learned:
• Do not rely on security by obscurity.
• Rate limiting is important, but it is only one element of an API defense strategy.
• Always have a plan for revoking and reissuing credentials.

© Copyright 2023 42Crunch

53 │ 42Crunch.com

#12: CI/CD platform

© Copyright 2023 42Crunch

54 │ 42Crunch.com

#12: CI/CD platform – how to prevent it

Design:

• Security by obscurity – don’t rely on “hidden” API endpoints
• Use robust credential masking and obscuring methods

Governance:

• Leakage of 3rd party tokens is not a feature !
• Poor date retention and sanitization processes

Development:

• Awareness training would highlight the need for token protection
• No standard methods used for masking and obfuscation

Protection:

• Rate-limiting would have prevented the brute-force discovery of endpoints

© Copyright 2023 42Crunch

55 │ 42Crunch.com

The top-ranking issues

Vulnerability Count

Broken object-level authorization (API1) 5

Lack of rate-limiting (API4) 3

Excessive information exposure (API3) 3

Broken function-level authorization (API5) 3

Broken authentication (API2) 3

Insecure default configuration (API7) 2

Security by obscurity 2

Hardcoded tokens 1

Cross-site request forgery 1

© Copyright 2023 42Crunch

56 │ 42Crunch.com

Broken object-level authorization (API1)

Use case
• API call parameters use the ID of the resource

accessed through the API
/api/shop1/financial_info.

• Attackers replace the IDs of their resources with
a different one which they guessed through
/api/shop2/financial_info.

• The API does not check permissions and lets the
call through.

• Problem is aggravated if IDs can be enumerated
/api/123/financial_info.

How to prevent
• Implement authorization checks with user policies and

hierarchy.
• Do not rely on IDs that the client sends. Use IDs stored

in the session object instead.
• Check authorization for each client request to access

database.
• Use random IDs that cannot be guessed (UUIDs).

https://apisecurity.io/encyclopedia/content/owasp/api1-broken-object-level-authorization

© Copyright 2023 42Crunch

https://apisecurity.io/encyclopedia/content/owasp/api1-broken-object-level-authorization

57 │ 42Crunch.com

Broken authentication (API2)

Use case
• Unprotected APIs that are considered “internal”
• Weak authentication that does not follow

industry best practices
• Weak API keys that are not rotated
• Passwords that are weak, plain text, encrypted,

poorly hashed, shared, or default passwords
• Authentication susceptible to brute force attacks

and credential stuffing
• Credentials and keys included in URLs
• Lack of access token validation (including JWT

validation)
• Unsigned or weakly signed non-expiring JWTs

How to prevent
• Check all possible ways to authenticate to all APIs.
• APIs for password reset and one-time links also allow

users to authenticate, and should be protected just as
rigorously.

• Use standard authentication, token generation,
password storage, and multi-factor authentication
(MFA).

• Use short-lived access tokens.
• Authenticate your apps (so you know who is talking to

you).
• Use stricter rate-limiting for authentication, and

implement lockout policies and weak password checks.

https://apisecurity.io/encyclopedia/content/owasp/api2-broken-authentication

© Copyright 2023 42Crunch

https://apisecurity.io/encyclopedia/content/owasp/api2-broken-authentication

58 │ 42Crunch.com

Excessive information exposure (API3)

Use case
• The API returns full data objects as they are

stored in the backend database.
• The client application filters the responses and

only shows the data that the users really need to
see.

• Attackers call the API directly and get also the
sensitive data that the UI would filter out.

How to prevent
• Never rely on the client to filter data!
• Review all API responses and adapt them to match what

the API consumers really need.
• Carefully define schemas for all the API responses.
• Do not forget about error responses, define proper

schemas as well.
• Identify all the sensitive data or Personally Identifiable

Information (PII), and justify its use.
• Enforce response checks to prevent accidental leaks of

data or exceptions.

https://apisecurity.io/encyclopedia/content/owasp/api3-excessive-data-exposure

© Copyright 2023 42Crunch

https://apisecurity.io/encyclopedia/content/owasp/api3-excessive-data-exposure

59 │ 42Crunch.com

Rugged by design

© Copyright 2023 42Crunch

60 │ 42Crunch.com

Threat modelling

● Establish your attack surface
● Understand the:

Use cases
Abuse cases

● Mitigations and compensating
controls

● Expose assumptions and
misunderstandings

● Put the Sec into DevOps !

© Copyright 2023 42Crunch

61 │ 42Crunch.com

Think like an attacker

© Copyright 2023 42Crunch

62 │ 42Crunch.com

Understand your data

● Privacy requirements
● What is your PII ?
● Handling privacy requests
● Data ownership

● Expose the bare minimum of data !

© Copyright 2023 42Crunch

63 │ 42Crunch.com

Understand your environments

● Secret storage
● Token exchange
● Device integrity
● Channel integrity

● Assume your environment is hostile

© Copyright 2023 42Crunch

64 │ 42Crunch.com

Rugged by implementation

© Copyright 2023 42Crunch

65 │ 42Crunch.com

Boss your JWT validation

https://42crunch.com/7-ways-to-avoid-jwt-pitfalls/

1. Use a Static Algorithm Configuration
2. Use Explicit Typing
3. Go All Out on Metadata
4. Treat your Secrets as Secrets
5. Bring Down the Testing Hammer
6. Encapsulating Security Behavior
7. Rely on Static Code Analysis

© Copyright 2023 42Crunch

https://42crunch.com/7-ways-to-avoid-jwt-pitfalls/

66 │ 42Crunch.com

Authorize every function endpoint

A REST API endpoint restricted to users with the specific "deleteTask" permission

1

2

3

4

5

6

7

8

9

app.delete('/tasks/:taskId', auth.hasPermission('deleteTask'), function(req, res) {

Task.remove({

_id: req.params.taskId

}, function(err, task) {

if (err)

res.send(err);

res.json({ message: 'Task successfully deleted' });

});

};

Check permissions explicitly for every
function access to prevent broken

function-level authorization
vulnerabilities

© Copyright 2023 42Crunch

67 │ 42Crunch.com

Be explicit about intended anonymous access

Explicitly declare methods with intended
anonymous access with appropriate

decorator or notation

A REST API endpoint to get a task

1
2

3

4
5

6

7

app.get('/tasks/:taskId', auth.allowPublicAccess(), function(req, res) {
Task.findById(req.params.taskId, function(err, task) {

if (err)

res.send(err);
res.json(task);

});

};

© Copyright 2023 42Crunch

68 │ 42Crunch.com

Be wary of your Object Relational Mapper

● ORMs are a massive development
convenience speeding up coding
effort

● ORMs are a leading cause of:
Excessive data exposure
Mass assignment

● Always understand what your ORM
is doing for you, and decouple
from direct API access

© Copyright 2023 42Crunch

69 │ 42Crunch.com

Explicitly enable methods, prevent unused methods

Explicitly specify the methods to be
used, and prevent unused methods in

the framework used

A Python Flask API endpoint

1
2

3

4
5

@app.route('/', methods=['POST'])
def my_first_api_endpoint():

json_data = json.loads(request.data)

...
return "", 200

© Copyright 2023 42Crunch

70 │ 42Crunch.com

Certificate pinning for mobile applications

https://approov.io/blog/man-in-the-middle-myths-and-legends

● Your mobile application is one of
your top attack vectors

● Without certificate pinning your
backend APIs can be easily reverse
engineered

● Tokens and secrets can easily be
exfiltrated via a proxy

© Copyright 2023 42Crunch

https://approov.io/blog/man-in-the-middle-myths-and-legends

71 │ 42Crunch.com

Use standard libraries and components

● NEVER write your own cryptography
functions or methods

● Use standard libraries for common
functionality (and scan them for
vulnerabilities)

● Stand on the shoulder of giants (and
contribute fixes and improvements)

© Copyright 2023 42Crunch

72 │ 42Crunch.com

Semgrep FTW

https://semgrep.dev/

Search for:
• Hardcoded secrets
• Missing AuthN/AuthZ

decorators
• JWT validation errors
• Missing method decorators
• Transport misconfiguration

© Copyright 2023 42Crunch

https://semgrep.dev/

73 │ 42Crunch.com

Beware of your framework default settings

● Insecure defaults
● Default handlers
● Enabling unused verbs
● Debug info
● Implicit behaviours

© Copyright 2023 42Crunch

74 │ 42Crunch.com

Don’t forget the old favorites

● CSRF in API-backed GUIs
● Command inject in routers and

appliances

© Copyright 2023 42Crunch

75 │ 42Crunch.com

Rugged at runtime

© Copyright 2023 42Crunch

76 │ 42Crunch.com

Rate limiting

API backend
42Crunch
firewall

This protection limits how many requests API Firewall
accepts from an IP address within a given time window.

© Copyright 2023 42Crunch

77 │ 42Crunch.com

JWT token validation

API backend
42Crunch
firewall

JWT token validation performs a variety of checks on
request tokens and blocks invalid requests

© Copyright 2023 42Crunch

78 │ 42Crunch.com

Security headers

API backend
42Crunch
firewall

These protections on APIs control security headers either locally to
specific paths, operations, responses, or alternatively to all incoming
requests or outgoing responses.

© Copyright 2023 42Crunch

79 │ 42Crunch.com

API monitoring in your SIEM – Azure Sentinel

© Copyright 2023 42Crunch

80 │ 42Crunch.com

Continuous threat detection

● Excessive AuthZ errors
● Path enumeration
● Rate limiting
● Excessive requests
● Tool detection
● Fuzzing detection
● Risky IP address detection

© Copyright 2023 42Crunch

81 │ 42Crunch.com

Leveraging your Cloud platform protections

API backend
42Crunch
firewall

Azure
Sentinel

Azure
firewall

© Copyright 2023 42Crunch

82 │ 42Crunch.com

Learning more

https://apisecurity.io/

APISecurity.io “Defending APIs against Cyber
Attack” – Colin Domoney

https://amzn.to/3fHp8Mz

“Hacking APIs” – Corey Ball

https://nostarch.com/hacking-apis

© Copyright 2023 42Crunch

https://apisecurity.io/

83 │ 42Crunch.com

API Security: A Blueprint for Success

eBook

• - Practical Guide on an API Security program.
• - Map your enterprise’s API security posture

against 6 key domains.
• - Champion the case for API Security.

Download here: https://42crunch.com/ebook-api-security-blueprint/

APIsecurity.io Community Newsletter: https://apisecurity.io/

© Copyright 2023 42Crunch

https://42crunch.com/ebook-api-security-blueprint/
https://apisecurity.io/

