
Protecting the Enterprise

OWASP API Security Top 10
Vulnerabilities 2023

DATASHEET

The OWASP Top 10 project has for a long time been the
standard list of top vulnerabilities to look for and mitigate in
the world of web applications. APIs represent a significantly
different set of threats, attack vectors, and security best
practices for enterprises. That is why the OWASP commu-
nity launched a new classification of Top 10 vulnerabilities,
specific to API Security.

42Crunch offers end-to-end protection for APIs with a
developer-first platform that enables continuous, automat-
ed and scalable API security. Enterprises do not have to rely
on security by obscurity, manually configured rules, or hope
that some anomaly detection can report an attack. With
42Crunch, our platform automatically protects your APIs
from the OWASP Top 10 API Security Vulnerabilities and
many additional threats.

Attacker substitutes the ID of their own resource in the API call with an ID of a resource belonging to
another user. Lack of proper authorization checks allows attackers to access the specified resource. This
attack is also known as IDOR (Insecure Direct Object Reference).

API 01. BROKEN OBJECT LEVEL AUTHORIZATION

• API call parameters use IDs of the resource accessed
through the API: /api/shop1/financial_details

• Attackers replace the IDs of their resources with a
different one, which they guessed:
/api/shop2/financial_details

• The API does not check permissions and lets the call
through

• Problem is aggravated if IDs can be enumerated:
/api/123/financial_details

• Implement authorization checks with user policies and
hierarchy

• Don’t rely on IDs sent from client. Use IDs stored in the
session object instead

• Check authorization for each client request
to access the database

• Use random non-guessable IDs (UUIDs)

• Implement a robust test framework to specifically test for
this vulnerability type

H
O

W
 T

O
 P

R
E

V
E

N
T

U
SE

 C
A

SE
S

42Crunch’s ability to
secure both the CI/CD
pipeline & the runtime

environment makes it a
compelling candidate

for any API security
project.

RIK TURNER

Principal Analyst
OMDIA

Security the way it should be.
We use 42Crunch to improve the security posture of our APIs.

GLOBAL AUTOMOTIVE MANUFACTURER

Poorly implemented API authentication allowing attackers access or to assume other users’ identities.

API 02. BROKEN AUTHENTICATION

• Unprotected APIs that are considered “internal”

• Weak authentication not following industry best practices

• Weak API keys that are not rotated

• Passwords that are weak, plain text, encrypted, poorly
hashed, shared, or default passwords

- Authentication susceptible to brute force attacks and
credential stuffing

• Credentials and keys included in URLs

• Lack of access token validation (including JWT validation)

• Unsigned or weakly signed non-expiring JWTs

• Check all possible ways to authenticate to all APIs

• APIs for password reset and one-time links also allow users to
authenticate, and should be protected just as rigorously

• Use standard authentication, token generation, password
storage, Multi- factor authentication (MFA)

• Use short-lived access tokens

• Authenticate your apps (so you know who is talking
to you)

• Use stricter rate-limiting for authentication, implement
lockout policies and weak password checks

H
O

W
 T

O
 P

R
E

V
E

N
T

U
SE

 C
A

SE
S

API endpoints can be vulnerable to attacks based on their data: exposing more data than is required
(excessive data exposure) or accepting and processing more data than they should (mass assignment).

API 03. BROKEN OBJECT PROPERTY LEVEL AUTHORIZATION

• The API returns full data objects as stored in the database

- The client application filters the responses and only shows
the data that the users really need to see

- Attackers call the API directly and retrieve sensitive data that
the UI would filter out

- API works with data structures without proper filtering

- Received payload blindly transformed into an object & stored

- Attackers guess the fields by looking at the GET request data

• Never rely on client to filter data

• Review all responses and adapt to what API consumers need

• Define schemas of all the API responses

• Don’t forget about error responses

• Identify all the sensitive or PII info and justify its use

• Do not automatically bind incoming data to internal objects

- Explicitly define all the expected parameters and payloads

- Set readOnly property to true in object schemas for all
properties retrieved through APIs that should never be modified

- Precisely define the schemas, types, and patterns you will
accept in requests at design time and enforce them at runtime

H
O

W
 T

O
 P

R
E

V
E

N
T

U
SE

 C
A

SE
S

API is not protected against an excessive amount of calls or payload sizes. Attackers can use this for DoS
and authentication flaws like brute force attacks.

API 04. UNRESTRICTED RESOURCE CONSUMPTION

• Attackers send the API more requests than it can handle

- Attackers send requests at a rate exceeding the API’s
processing speed causing the API to drop requests

- The size of the requests exceeds what the API can process

- An attacker submits requests with excessively large payloads
or complex queries causing the API to drop requests

• Apply rate limiting policies to all endpoints

• Tailor rate limits specific to API methods, clients, addresses

- Configure rate limiting on different keys, e.g tokens

- Limit payload sizes, and query complexity

• Checks on compression ratios

• Limits on container resources

- Limit pagination size and page count retrieved by a query H
O

W
 T

O
 P

R
E

V
E

N
T

U
SE

 C
A

SE
S

• Never rely on client to filter data

• Review all responses and adapt to what API consumers need

• Define schemas of all the API responses

• Don’t forget about error responses

• Identify all the sensitive or PII info and justify its use

• Do not automatically bind incoming data to internal objects

- Explicitly define all the expected parameters and payloads

- Set readOnly property to true in object schemas for all
properties retrieved through APIs that should never be modified

- Precisely define the schemas, types, and patterns you will
accept in requests at design time and enforce them at runtime

API relies on the client to use user level or admin-level/privileged APIs as appropriate. Attackers figure
out the “hidden” admin API methods and invoke them directly.

API 05. BROKEN FUNCTION LEVEL AUTHORIZATION

• Some administrative functions are exposed as APIs

• Sensitive operations should only be available internally

• Non-privileged users can access these functions if they
know how

• Can be a matter of knowing the URL, using a different
verb or parameter

/api/users/v1/user/myinfo

/api/admins/v1/users/all

• Do not rely on the client to enforce admin/privilege access

• Apply deny all access by default

• Only allow operations to users based on appropriate role

• Implement properly designed and tested authorization

H
O

W
 T

O
 P

R
E

V
E

N
T

U
SE

 C
A

SE
S

Server-Side Request Forgery (SSRF) can occur when an API fetches a remote resource without validating
the user-supplied URL.

API 07. SERVER SIDE REQUEST FORGERY

- An API accepts a URL as a parameter for a redirection, an
attacker finds that they can use this to redirect the response
to a rogue site which is able to steal sensitive data.

- An attacker can force an API to load resources from a server
under their control; this is the basis of a key injection attack
in JWTs

- An API allows access to the local host allowing an attacker
to use malform requests to access local resources

• Precisely define the schemas, types, and patterns you will
accept in requests at design time and enforce at runtime

• Prevent your API server from following HTTP redirections

• Use an allow list of permitted redirects or accesses

• Restrict the range of allowed URL schemes and ports

• Use a standard implementation for the library responsible
for loading resources making sure it cannot access the local
host, and uses sanitized URLs from a safe URL parser H

O
W

 T
O

 P
R

E
V

E
N

T

U
SE

 C
A

SE
S

API 06. UNRESTRICTED ACCESS TO SENSITIVE BUSINESS FLOWS

• An attacker discovers an API to buy a product online and
uses automation to bulk purchase all items of a newly
released product which they later re-sell

- Real-estate websites price information can be scraped
over time to predict house price trends in an area

- Attackers can use automation to perform actions faster
than a human user and gain an unfair advantage on
auction sites or similar

• Understand business flows that could be sensitive to abuse
and add extra layers of protection. Ensure authentication is
required, using recommended OAuth flows

- Ensure that APIs are fully protected with robust rate-limiting
in front of the API

- Monitor API access and restrict clients using either suspicious
devices or originating from risky IP addresses

- Identify non-human usage patterns and insert Captcha or
other human detection controls H

O
W

 T
O

 P
R

E
V

E
N

T

U
SE

 C
A

SE
S

Poor configuration of the API servers allows attackers to exploit them.

API 08. SECURITY MISCONFIGURATION

- Unpatched systems

- Unprotected files and directories

- Unhardened images

- Missing, outdated, or misconfigured TLS

- Exposed storage or server management panels

- Missing CORS policy or security headers

- Error messages with stack traces

- Unnecessary features enabled

. Automate the hardening and patching processes of the full
API stack (code, libraries, containers)

. Automate test to API endpoints for misconfiguration (TLS
version, ciphers, bad verbs)

. Disable unnecessary features

. Restrict administrative access

. Define and enforce all outputs, including errors H
O

W
 T

O
 P

R
E

V
E

N
T

U
SE

 C
A

SE
S

A set of APIs exposes a business flow and an attacker abuses these APIs using automated methods to
achieve a malicious intent, such as exfiltrating data, or manipulating market or price data.

© 42Crunch.com 2023

San Francisco - Dublin - Madrid - Montpellier - London

ABOUT 42CRUNCH

42Crunch was founded by veterans of the security and API
management industry who recognized that the traditional
approach to protecting APIs was simply not scalable. APIs
are the core building block of every enterprise’s digital strat-
egy, yet they are also the number one attack surface for
hackers. The time is now right for a new approach to API
security. Prevent today and protect tomorrow.

Attacker finds non-production versions of the API (for example staging, testing, beta or earlier versions)
that are not as well protected and uses those to launch the attack.

API 09. IMPROPER INVENTORY MANAGEMENT

• DevOps, cloud, containers, Kubernetes make having
multiple deployments easy (for example dev, test, branches,
staging, earlier versions)

• Desire to maintain backward compatibility forces to leave
old APIs running

• Old or non-production versions are not properly maintained
but these endpoints still have access to production data

• Once authenticated with one endpoint, attackers may
switch to the other, production one

. Keep an up-to-date Inventory all API hosts

• Limit access to anything that should not be public

• Limit access to production data and segregate access to
production and non-production data.

• Implement additional external controls such as API firewalls

• Properly retire old versions of APIs or backport security fixes
to them

• Implement strict authentication, redirects, CORS, etc.

H
O

W
 T

O
 P

R
E

V
E

N
T

U
SE

 C
A

SE
S

Modern API based systems tend to be highly interconnected, frequently consuming upstream APIs.
Unfortunately these upstream APIs may themselves be vulnerable and put their consumers at risk.

API 10. UNSAFE CONSUMPTION OF APIS

• An upstream API may inadvertently store data provided to
it by a consumer, thereby violating the data governance
regulations of the consumer

- An upstream API provider may be attacked and
compromised and then pass malicious data to its
consumers due to insufficient internal controls. A typical
example is an SQL injection attack

• Like the case with user input, do not trust upstream API data.

• Filter and sanitize any input data regardless of origin,
particularly against injection attacks.

• Ensure that upstream API providers specify their API
contract, and use runtime mechanisms to enforce this
contract.

• Assume upstream API providers are part of your supply chain
and verify their internal development processes.

• Use a secure communication channel at all times. H
O

W
 T

O
 P

R
E

V
E

N
T

U
SE

 C
A

SE
S

We meet the most rigorous
industry security standards.

We contribute to
the community work on

the OpenAPI specification.

We are an active participant
in the OWASP Foundation

